Mohammad Al-Fares
Mohammad (Mo) Al-Fares is with the Global Networking team at Google where he works on software systems to support network design, management, and cloud networking in Google’s production networks.
Prior to joining Google, he earned his Ph.D. in Computer Science at UC San Diego, advised by Prof. Amin Vahdat.
Research Areas
Authored Publications
Sort By
Change Management in Physical Network Lifecycle Automation
Virginia Beauregard
Kevin Grant
Angus Griffith
Jahangir Hasan
Chen Huang
Quan Leng
Jiayao Li
Alexander Lin
Zhoutao Liu
Ahmed Mansy
Bill Martinusen
Nikil Mehta
Andrew Narver
Anshul Nigham
Melanie Obenberger
Sean Smith
Kurt Steinkraus
Sheng Sun
Edward Thiele
Proc. 2023 USENIX Annual Technical Conference (USENIX ATC 23)
Preview abstract
Automated management of a physical network's lifecycle is critical for large networks. At Google, we manage network design, construction, evolution, and management via multiple automated systems. In our experience, one of the primary challenges is to reliably and efficiently manage change in this domain -- additions of new hardware and connectivity, planning and sequencing of topology mutations, introduction of new architectures, new software systems and fixes to old ones, etc.
We especially have learned the importance of supporting multiple kinds of change in parallel without conflicts or mistakes (which cause outages) while also maintaining parallelism between different teams and between different processes. We now know that this requires automated support.
This paper describes some of our network lifecycle goals, the automation we have developed to meet those goals, and the change-management challenges we encountered. We then discuss in detail our approaches to several specific kinds of change
management:
(1) managing conflicts between multiple operations on the same network;
(2) managing conflicts between operations spanning the boundaries between networks;
(3) managing representational changes in the models that drive our automated systems.
These approaches combine both novel software systems and software-engineering practices.
While this paper reports on our experience with large-scale datacenter network infrastructures, we are also applying the same tools and practices in several adjacent domains, such as the management of WAN systems, of machines, and of datacenter physical designs. Our approaches are likely to be useful at smaller scales, too.
View details
B4 and After: Managing Hierarchy, Partitioning, and Asymmetry for Availability and Scale in Google's Software-Defined WAN
Min Zhu
Rich Alimi
Kondapa Naidu Bollineni
Chandan Bhagat
Sourabh Jain
Jay Kaimal
Jeffrey Liang
Kirill Mendelev
Faro Thomas Rabe
Saikat Ray
Malveeka Tewari
Monika Zahn
Joon Ong
SIGCOMM'18 (2018)
Preview abstract
Private WANs are increasingly important to the operation of enterprises, telecoms, and cloud providers. For example, B4, Google’s private software-defined WAN, is larger and growing faster than our connectivity to the public Internet. In this paper, we present the five-year evolution of B4. We describe the techniques we employed to incrementally move from offering best-effort content-copy services to carrier-grade availability, while concurrently scaling B4 to accommodate 100x more traffic. Our key challenge is balancing the tension introduced by hierarchy required for scalability, the partitioning required for availability, and the capacity asymmetry inherent to the construction and operation of any large-scale network. We discuss our approach to managing this tension: i) we design a custom hierarchical network topology for both horizontal and vertical software scaling, ii) we manage inherent capacity asymmetry in hierarchical topologies using a novel traffic engineering algorithm without packet encapsulation, and iii) we re-architect switch forwarding rules via two-stage matching/hashing to deal with asymmetric network failures at scale.
View details