Jump to Content
Authored Publications
Google Publications
Other Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Efficient Language Model Architectures for Differentially Private Federated Learning
    Yanxiang Zhang
    Ananda Theertha Suresh
    Privacy Regulation and Protection in Machine Learning Workshop at ICLR 2024 (2024) (to appear)
    Preview abstract Cross-device federated learning (FL) is a technique that trains a model on data distributed across typically millions of edge devices without data ever leaving the devices. SGD is the standard client optimizer for on device training in cross-device FL, favored for its memory and computational efficiency. However, in centralized training of neural language models, adaptive optimizers are preferred as they offer improved stability and performance. In light of this, we ask if language models can be modified such that they can be efficiently trained with SGD client optimizers and answer this affirmatively. We propose a scale-invariant \emph{Coupled Input Forget Gate} (SI CIFG) recurrent network by modifying the sigmoid and tanh activations in the recurrent cell and show that this new model converges faster and achieves better utility than the standard CIFG recurrent model in cross-device FL in large scale experiments. We further show that the proposed scale invariant modification also helps in federated learning of larger transformer models. Finally, we demonstrate the scale invariant modification is also compatible with other non-adaptive algorithms. Particularly, our results suggest an improved privacy utility trade-off in federated learning with differential privacy. View details
    Preview abstract Most studies in cross-device federated learning focus on small models, due to the server-client communication and on-device computation bottlenecks. In this work, we leverage various techniques for mitigating these bottlenecks to train larger language models in cross-device federated learning. With systematic applications of partial model training, quantization, efficient transfer learning, and communication-efficient optimizers, we are able to train a 21M parameter Transformer that achieves the same perplexity as that of a similarly sized LSTM with ~10x smaller client-to-server communication cost and 11% lower perplexity than smaller LSTMs commonly studied in literature. View details
    Preview abstract Text normalization, or the process of transforming text into a consistent, canonical form, is crucial for speech applications such as text-to-speech synthesis (TTS). In TTS, the system must decide whether to verbalize "1995" as "nineteen ninety five" in "born in 1995" or as "one thousand nine hundred ninety five" in "page 1995". We present an experimental comparison of various Transformer-based sequence-to-sequence (seq2seq) models of text normalization for speech and evaluate them on a variety of datasets of written text aligned to its normalized spoken form. These models include variants of the 2-stage RNN-based tagging/seq2seq architecture introduced by Zhang et al (2019) where we replace the RNN with a Transformer in one or more stages. We evaluate the performance when initializing the encoder with a pre-trained BERT model. We compare these model variants with a vanilla Transformer that outputs string representations of edit sequences. Of our approaches, using Transformers for sentence context encoding within the 2-stage model proved most effective, with the fine-tuned BERT model yielding the best performance. View details
    Preview abstract We study multiple-source domain adaptation, when the learner has access to abundant labeled data from multiple source domains and limited labeled data from the target domain. We analyze existing algorithms and propose an instance-optimal approach based on model selection. We provide efficient algorithms and empirically demonstrate the benefits of our approach. View details
    FedJAX: Federated learning simulation with JAX
    Ananda Theertha Suresh
    Ke Wu
    1st NeurIPS Workshop on New Frontiers in Federated Learning (NFFL 2021) (2021)
    Preview abstract Federated learning is a machine learning technique that enables training across decentralized data. Recently, federated learning has become an active area of research due to an increased focus on privacy and security. In light of this, a variety of open source federated learning libraries have been developed and released. We introduce FedJAX, a JAX-based open source library for federated learning simulations that emphasizes ease-of-use in research. With its simple primitives for implementing federated learning algorithms, prepackaged datasets, models and algorithms, and fast simulation speed, FedJAX aims to make developing and evaluating federated algorithms faster and easier for researchers. Our benchmark results show that FedJAX can be used to train models with federated averaging on the EMNIST dataset in a few minutes and the Stack Overflow dataset in roughly an hour with standard hyperparameters using TPUs. View details
    Preview abstract We present a theoretical and algorithmic study of the multiple-source domain adaptation problem in the common scenario where the learner has access only to a limited amount of labeled target data, but where he has at his disposal a large amount of labeled data from multiple source domains. We show that a new family algorithms based on model selection ideas benefit from very favorable guarantees in this scenario and discuss some theoretical obstacles affecting some alternative techniques. We also report the results of several experiments with our algorithms that demonstrate their practical effectiveness in several tasks View details
    Preview abstract In distributed learning settings such as federated learning, the training algorithm can be potentially biased towards different clients. Mohri et al. (2019) proposed a domain-agnostic learning algorithm, where the model is optimized for any target distribution formed by a mixture of the client distributions in order to overcome this bias. They further proposed an algorithm for the cross-silo federated learning setting, where the number of clients is small. We consider this problem in the cross-device setting, where the number of clients is much larger. We propose a communication-efficient distributed algorithm called Agnostic Federated Averaging (or AgnosticFedAvg) to minimize the domain-agnostic objective proposed in (Mohri et al., 2019), which is amenable to other private mechanisms such as secure aggregation. We highlight two types of naturally occurring domains in federated learning and argue that AgnosticFedAvg performs well on both. To demonstrate the practical effectiveness of AgnosticFedAvg, we report positive results for large-scale language modeling tasks in both simulation and live experiments, where the latter involves training language models for Spanish virtual keyboard for millions of user devices. View details
    Preview abstract Breaking domain names such as openresearch into component words open and research is important for applications like Text-to-Speech synthesis and web search. We link this problem to the classic problem of Chinese word segmentation and show the effectiveness of a tagging model based on Recurrent Neural Networks (RNNs) using characters as input. To compensate for the lack of training data, we propose a pre-training method on concatenated entity names in a large knowledge database. Pre-training improves the model by 33% and brings the sequence accuracy to 85%. View details
    No Results Found