Doron Kukliansky
Research Areas
Authored Publications
Sort By
A Neural Encoder for Earthquake Rate Forecasting
Oleg Zlydenko
Brendan Meade
Alexandra Sharon Molchanov
Sella Nevo
Yohai bar Sinai
Scientific Reports (2023)
Preview abstract
Forecasting the timing of earthquakes is a long-standing challenge. Moreover, it is still debated how to formulate this problem in a useful manner, or to compare the predictive power of different models.
Here, we develop a versatile neural encoder of earthquake catalogs, and apply it to the fundamental problem of earthquake rate prediction, in the spatio-temporal point process framework. The epidemic
type aftershock sequence model (ETAS) effectively learns a small number of parameters to constrain assumed functional forms for the space and time relationships of earthquake sequences (e.g., Omori-Utsu law). Here we introduce learned spatial and temporal embeddings for point process earthquake forecast models that capture complex correlation structures. We demonstrate the generality of this neural representation as compared with ETAS model using train-test data splits and how it enables the incorporation of additional geophysical information. In rate prediction tasks, the generalized model shows > 4% improvement in information gain per earthquake and the simultaneous learning of anisotropic spatial structures analogous to fault traces. The trained network can be also used to perform short-term prediction tasks, showing similar improvement while providing a 1,000-fold reduction in run-time.
View details
Preview abstract
Visual Question Answering (VQA) has benefited from increasingly sophisticated models, but has not enjoyed the same level of engagement in terms of data creation. In this paper, we propose a method that automatically derives VQA examples at volume, by leveraging the abundance of existing image-caption annotations combined with neural models for textual question generation. We show that the resulting data is of high-quality. VQA models trained on our data improve state-of-the-art zero-shot accuracy by double digits and achieve a level of robustness that lacks in the same model trained on human-annotated VQA data.
View details
TRUE: Re-evaluating Factual Consistency Evaluation
Or Honovich
Hagai Taitelbaum
Vered Cohen
Thomas Scialom
NAACL 2022, The Association for Computational Linguistics (2022)
Preview abstract
Grounded text generation systems often generate text that contains factual inconsistencies, hindering their real-world applicability. Automatic factual consistency evaluation may help alleviate this limitation by accelerating evaluation cycles, filtering inconsistent outputs and augmenting training data. While attracting increasing attention, such evaluation metrics are usually developed and evaluated in silo for a single task or dataset, slowing their adoption. Moreover, previous meta-evaluation protocols focused on system-level correlations with human annotations, which leave the example-level accuracy of such metrics unclear.
In this work, we introduce TRUE: a comprehensive study of factual consistency metrics on a standardized collection of existing texts from diverse tasks, manually annotated for factual consistency. Our standardization enables an example-level meta-evaluation protocol that is more actionable and interpretable than previously reported correlations, yielding clearer quality measures. Across diverse state-of-the-art metrics and 11 datasets we find that large-scale NLI and question generation-and-answering-based approaches achieve strong and complementary results. We recommend those methods as a starting point for model and metric developers, and hope TRUE will foster progress towards even better methods.
View details