
Daniel Deutsch
Daniel is a Research Scientist on the Google Translate Research team. His research interests include automatic and human evaluation of text generation.
Research Areas
Authored Publications
Sort By
Google
Mitigating metric bias in minimum bayes risk decoding
Proceedings of the Ninth Conference on Machine Translation (2024), pp. 1063-1094
Training and Meta-Evaluating Machine Translation Evaluation Metrics at the Paragraph-Level
Jurik Juraska
Mara Finkelstein
Proceedings of the Eighth Conference on Machine Translation, Association for Computational Linguistics, Singapore (2023), pp. 996-1013
WMT23 Metrics shared task Submission: Quality Estimation using Minimum Bayes Risk
Subhajit Naskar
Proceedings of the Eighth Conference on Machine Translation, Association for Computational Linguistics, Singapore (2023), pp. 806-811
Results of WMT23 Metrics Shared Task: Metrics might be Guilty but References are not Innocent
Nitika Mathur
Chi-kiu Lo
Eleftherios Avramidis
Ricardo Rei
Brian Thompson
Tom Kocmi
Frédéric Blain
Craig Stewart
Chrysoula Zerva
Sheila Castilho
Alon Lavie
George Foster
Proceedings of the Eighth Conference on Machine Translation, Association for Computational Linguistics, Singapore (2023), pp. 576-626
Ties Matter: Meta-Evaluating Modern Metrics with Pairwise Accuracy and Tie Calibration
George Foster
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Singapore, pp. 12914-12929
MetricX-23: The Google Submission to the WMT 2023 Metrics Shared Task
Jurik Juraska
Mara Finkelstein
Mahdi Mirzazadeh
Conference on Machine Translation (2023)
The Devil is in the Errors: Leveraging Large Language Models for Fine-grained Machine Translation Evaluation
Patrick Fernandes
Mara Finkelstein
André Martins
Graham Neubig
Ankush Garg
Conference on Machine Translation (2023)
There's no Data Like Better Data: Using QE Metrics for MT Data Filtering
Jan-Thorsten Peter
Mara Finkelstein
Jurik Juraska
Proceedings of the Eighth Conference on Machine Translation, Association for Computational Linguistics, Singapore (2023), pp. 561-577