Jump to Content

Training and Meta-Evaluating Machine Translation Evaluation Metrics at the Paragraph-Level

Jurik Juraska
Mara Finkelstein
Proceedings of the Eighth Conference on Machine Translation, Association for Computational Linguistics, Singapore (2023), pp. 996-1013


As research on machine translation moves to translating text beyond the sentence level, it remains unclear how effective automatic evaluation metrics are at scoring longer translations. In this work, we first propose a method for creating paragraph-level data for training and meta-evaluating metrics from existing sentence-level data. Then, we use these new datasets to benchmark existing sentence-level metrics as well as train learned metrics at the paragraph level. Interestingly, our experimental results demonstrate that using sentence-level metrics to score entire paragraphs is equally as effective as using a metric designed to work at the paragraph level. We speculate this result can be attributed to properties of the task of reference-based evaluation as well as limitations of our datasets with respect to capturing all types of phenomena that occur in paragraph-level translations.