Arno Eigenwillig

Arno Eigenwillig

Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    General Geospatial Inference with a Population Dynamics Foundation Model
    Chaitanya Kamath
    Prithul Sarker
    Joydeep Paul
    Yael Mayer
    Sheila de Guia
    Jamie McPike
    Adam Boulanger
    David Schottlander
    Yao Xiao
    Manjit Chakravarthy Manukonda
    Monica Bharel
    Von Nguyen
    Luke Barrington
    Niv Efron
    Krish Eswaran
    Shravya Shetty
    (2024) (to appear)
    Preview abstract Supporting the health and well-being of dynamic populations around the world requires governmental agencies, organizations, and researchers to understand and reason over complex relationships between human behavior and local contexts. This support includes identifying populations at elevated risk and gauging where to target limited aid resources. Traditional approaches to these classes of problems often entail developing manually curated, task-specific features and models to represent human behavior and the natural and built environment, which can be challenging to adapt to new, or even related tasks. To address this, we introduce the Population Dynamics Foundation Model (PDFM), which aims to capture the relationships between diverse data modalities and is applicable to a broad range of geospatial tasks. We first construct a geo-indexed dataset for postal codes and counties across the United States, capturing rich aggregated information on human behavior from maps, busyness, and aggregated search trends, and environmental factors such as weather and air quality. We then model this data and the complex relationships between locations using a graph neural network, producing embeddings that can be adapted to a wide range of downstream tasks using relatively simple models. We evaluate the effectiveness of our approach by benchmarking it on 27 downstream tasks spanning three distinct domains: health indicators, socioeconomic factors, and environmental measurements. The approach achieves state-of-the-art performance on geospatial interpolation across all tasks, surpassing existing satellite and geotagged image based location encoders. In addition, it achieves state-of-the-art performance in extrapolation and super-resolution for 25 of the 27 tasks. We also show that the PDFM can be combined with a state-of-the-art forecasting foundation model, TimesFM, to predict unemployment and poverty, achieving performance that surpasses fully supervised forecasting. The full set of embeddings and sample code are publicly available for researchers. In conclusion, we have demonstrated a general purpose approach to geospatial modeling tasks critical to understanding population dynamics by leveraging a rich set of complementary globally available datasets that can be readily adapted to previously unseen machine learning tasks. View details
    Fast Routing in Very Large Public Transportation Networks Using Transfer Patterns
    Hannah Bast
    Erik Carlsson
    Veselin Raychev
    Algorithms - ESA 2010, 18th Annual European Symposium. Proceedings, Part I, Springer, pp. 290-301
    Preview abstract We show how to route on very large public transportation networks (up to half a billion arcs) with average query times of a few milliseconds. We take into account many realistic features like: traffic days, walking between stations, queries between geographic locations instead of a source and a target station, and multi-criteria cost functions. Our algorithm is based on two key observations: (1) many shortest paths share the same transfer pattern, i.e., the sequence of stations where a change of vehicle occurs; (2) direct connections without change of vehicle can be looked up quickly. We precompute the respective data; in practice, this can be done in time linear in the network size, at the expense of a small fraction of non-optimal results. We have accelerated public transportation routing on Google Maps with a system based on our ideas. We report experimental results for three data sets of various kinds and sizes. View details