George Toderici
George Toderici is a research scientist / TLM of the Neural Compression team in Google Research. He and his team are exploring new methods for compression of multimedia content using techniques inspired from the neural network domain. Previously he has worked on video classification tasks based on classical methods as well as more modern neural network-based methods. Dr. Toderici has been involved in organizing the first and second Workshop and Challenge on Learned Image Compression (CLIC 2018-2021 at CVPR), the first and second YouTube-8M workshop at CVPR 2017, ECCV 2018, ICCV 2019, the THUMOS 2014 workshop at ECCV, and is one of the co-authors of the Sports-1M and Atomic Video Actions (AVA) datasets. Previously he has served as a Deep Learning area co-chair for ACM Intl. Conf. on Multimedia (MM) in 2014, In addition, he has served in the program committees of CVPR, ECCV, ICCV, ICLR and NIPS for numerous years. His research interests include deep learning, action recognition and video classification.
Authored Publications
Sort By
VCT: A Video Compression Transformer
Sung Jin Hwang
NeurIPS 2022, NeurIPS 2022
Preview abstract
We show how transformers can be used to vastly simplify neural video compression. Previous methods have been relying on an increasing number of architectural biases and priors, including motion prediction and warping operations, resulting in complex models. Instead, we independently map input frames to representations and use a transformer to model their dependencies, letting it predict the distribution of future representations given the past. The resulting video compression transformer outperforms previous methods on standard video compression data sets. Experiments on synthetic data show that our model learns to handle complex motion patterns such as panning, blurring and fading purely from data. Our approach is easy to implement, and we release code to facilitate future research.
View details
Neural Video Compression using GANs for Detail Synthesis and Propagation
Johannes Ballé
European Conference on Computer Vision (2022)
Preview abstract
We present the first neural video compression method based on generative adversarial networks (GANs). Our approach significantly outperforms previous neural and non-neural video compression methods in a user study, setting a new state-of-the-art in visual quality for neural methods. We show that the GAN loss is crucial to obtain this high visual quality. Two components make the GAN loss effective: we i) synthesize detail by conditioning the generator on a latent extracted from the warped previous reconstruction to then ii) propagate this detail with high-quality flow. We find that user studies are required to compare methods, i.e., none of our quantitative metrics were able to predict all studies. We present the network design choices in detail, and ablate them with user studies.
View details
LVAC: Learned Volumetric Attribute Compression for Point Clouds using Coordinate Based Networks
Phil Chou
Sung Jin Hwang
Journal of Frontiers in Signal Processing (2022)
Preview abstract
We propose the first learned compression framework, LVAC, for volumetric functions represented by implicit networks -- a.k.a. coordinate-based networks (CBNs). In order to evaluate LVAC and compare it with prior (traditional) methods, we specifically focus on compressing point cloud attributes since there are no compression baselines for other signals' CBN-based representations. LVAC serves as the first baseline for them. More concretely, we consider the attributes of a point cloud as samples of a vector-valued volumetric function at discrete positions. To compress the attributes given the positions, we compress the parameters of the volumetric function. We represent the volumetric function by shifts of a CBN, or implicit neural network. Inputs to the network include both spatial coordinates and a latent vector per shift. To compress the latent vectors, we perform an end-to-end training of the overall pipeline where the latent vectors are rate-distortion optimized by back-propagation through a rate-distortion Lagrangian loss in an auto-decoder configuration. The result outperforms the current standard, RAHT, by 2--4 dB.
View details
Nonlinear Transform Coding
Johannes Ballé
Philip A. Chou
Sung Jin Hwang
IEEE Trans. on Special Topics in Signal Processing, 15 (2021) (to appear)
Preview abstract
We review a class of methods that can be collected under the name nonlinear transform coding (NTC), which over the past few years have become competitive with the best linear transform codecs for images, and have superseded them in terms of rate–distortion performance under established perceptual quality metrics such as MS-SSIM. We assess the empirical rate–distortion performance of NTC with the help of simple example sources, for which the optimal performance of a vector quantizer is easier to estimate than with natural data sources. To this end, we introduce a novel variant of entropy-constrained vector quantization. We provide an analysis of various forms of stochastic optimization techniques for NTC models; review architectures of transforms based on artificial neural networks, as well as learned entropy models; and provide a direct comparison of a number of methods to parameterize the rate–distortion trade-off of nonlinear transforms, introducing a simplified one.
View details
High Fidelity Generative Image Compression
Michael Tschannen
Advances in Neural Information Processing Systems 34 (2020)
Preview abstract
We extensively study how to combine Generative Adversarial Networks and learned compression to obtain a state-of-the-art generative lossy compression system. In particular, we investigate normalization layers, generator and discriminator architectures, training strategies, as well as perceptual losses. In contrast to previous work, i) we obtain visually pleasing reconstructions that are perceptually similar to the input, ii) we operate in a broad range of bitrates, and iii) our approach can be applied to high-resolution images. We bridge the gap between rate-distortion-perception theory and practice by evaluating our approach both quantitatively with various perceptual metrics, and with a user study. The study shows that our method is preferred to previous approaches even if they use more than 2x the bitrate.
View details
End-to-end Learning of Compressible Features
Johannes Ballé
Abhinav Shrivastava
2020 IEEE Int. Conf. on Image Processing (ICIP)
Preview abstract
Pre-trained convolutional neural networks (CNNs) are very powerful as an off the shelf feature generator and have been shown to perform very well on a variety of tasks. Unfortunately, the generated features are high dimensional and expensive to store: potentially hundreds of thousands of floats per example when processing videos. Traditional entropy based lossless compression methods are of little help as they do not yield desired level of compression while general purpose lossy alternatives (e.g. dimensionality reduction techniques) are sub-optimal as they end up losing important information. We propose a learned method that jointly optimizes for compressibility along with the original objective for learning the features. The plug-in nature of our method makes it straight-forward to integrate with any target objective and trade-off against compressibility. We present results on multiple benchmarks and demonstrate that features learned by our method maintain their informativeness while being order of magnitude more compressible.
View details
Scale-Space Flow for End-to-End Optimized Video Compression
Johannes Ballé
Sung Jin Hwang
2020 IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR)
Preview abstract
Despite considerable progress on end-to-end optimized deep networks for image
compression, video coding remains a challenging task. Recently proposed
methods for learned video compression use optical flow and bilinear warping
for motion compensation and show competitive rate-distortion performance
relative to hand-engineered codecs like H.264 and HEVC. However, these
learning-based methods rely on complex architectures and training schemes
including the use of pre-trained optical flow networks, sequential training of
sub-networks, adaptive rate control, and buffering intermediate
reconstructions to disk during training. In this paper, we show that a
generalized warping operator that better handles common failure cases,
e.g. disocclusions and fast motion, can provide competitive compression
results with a greatly simplified model and training procedure. Specifically,
we propose scale-space flow, an intuitive generalization of optical
flow that adds a scale parameter to allow the network to better model
uncertainty. Our experiments show that a low-latency video compression model
(no B-frames) using scale-space flow for motion compensation can outperform
analogous state-of-the art learned video compression models while being
trained using a much simpler procedure and without any pre-trained optical
flow networks.
View details
AVA: A Video Dataset of Spatio-temporally Localized Atomic Visual Actions
Carl Martin Vondrick
Jitendra Malik
CVPR (2018)
Preview abstract
This paper introduces a video dataset of spatio-temporally localized Atomic Visual Actions (AVA). The AVA dataset densely annotates 80 atomic visual actions in 430 15-minute video clips, where actions are localized in space and time, resulting in 1.58M action labels with multiple labels per person occurring frequently. The key characteristics of our dataset are: (1) the definition of atomic visual actions, rather than composite actions; (2) precise spatio-temporal annotations with possibly multiple annotations for each person; (3) exhaustive annotation of these atomic actions over 15-minute video clips; (4) people temporally linked across consecutive segments; and (5) using movies to gather a varied set of action representations. This departs from existing datasets for spatio-temporal action recognition, which typically provide sparse annotations for composite actions in short video clips. We will release the dataset publicly.
AVA, with its realistic scene and action complexity, exposes the intrinsic difficulty of action recognition. To benchmark this, we present a novel approach for action localization that builds upon the current state-of-the-art methods, and demonstrates better performance on JHMDB and UCF101-24 categories. While setting a new state of the art on existing datasets, the overall results on AVA are low at 15.6% mAP, underscoring the need for developing new approaches for video understanding.
View details
Towards a Semantic Perceptual Image Metric
Johannes Ballé
Sung Jin Hwang
Sergey Ioffe
Sean O'Malley
Charles Rosenberg
2018 25th IEEE Int. Conf. on Image Processing (ICIP)
Preview abstract
We present a full reference, perceptual image metric based on VGG-16, an artificial neural network trained on object classification. We fit the metric to a new database based on 140k unique images annotated with ground truth by human raters who received minimal instruction. The resulting metric shows competitive performance on TID 2013, a database widely used to assess image quality assessments methods. More interestingly, it shows strong responses to objects potentially carrying semantic relevance such as faces and text, which we demonstrate using a visualization technique and ablation experiments. In effect, the metric appears to model a higher influence of semantic context on judgements, which we observe particularly in untrained raters. As the vast majority of users of image processing systems are unfamiliar with Image Quality Assessment (IQA) tasks, these findings may have significant impact on real-world applications of perceptual metrics.
View details
Improved Lossy Image Compression with Priming and Spatially Adaptive Bit Rates in Recurrent Convolutional Neural Networks
Damien Vincent
Michele Covell
Sung Jin Hwang
Joel Shor
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
Preview abstract
We propose a method for lossy image compression based on recurrent, convolutional neural networks that outperforms BPG (4:2:0), WebP, JPEG2000, and JPEG as measured by MS-SSIM. We introduce three improvements over previous research that lead to this state-of-the-art result using a single model. First, we show that training with a pixel-wise loss weighted by SSIM increases reconstruction quality according to several metrics. Second, we modify the recurrent architecture to improve spatial diffusion, which allows the network to more effectively capture and propagate image information through the network’s hidden state. Finally, in addition to lossless entropy coding, we use a spatially adaptive bit allocation algorithm to more efficiently use the limited number of bits to encode visually complex image regions. We evaluate our method on the Kodak and Tecnick image sets and compare against standard codecs as well recently published methods based on deep neural networks.
View details