Arun Narayanan
Research Areas
Authored Publications
Sort By
Extracting Targeted Training Data from ASR Models, and How to Mitigate It
Ehsan Amid
Proc. Interspeech 2022 (2022) (to appear)
Preview abstract
Recent work has designed methods to demonstrate that model updates in ASR training can leak potentially sensitive attributes of the utterances used in computing the updates. In this work, we design the first method to demonstrate information leakage about training data from trained ASR models. We design Noise Masking, a fill-in-the-blank style method for extracting targeted parts of training data from trained ASR models. We demonstrate the success of Noise Masking by using it in four settings for extracting names from the LibriSpeech dataset used for training a state-of-the-art Conformer model. In particular, we show that we are able to extract the correct names from masked training utterances with 11.8% accuracy, while the model outputs some name from the train set 55.2% of the time. Further, we show that even in a setting that uses synthetic audio and partial transcripts from the test set, our method achieves 2.5% correct name accuracy (47.7% any name success rate). Lastly, we design Word Dropout, a data augmentation method that we show when used in training along with Multistyle TRaining (MTR), provides comparable utility as the baseline, along with significantly mitigating extraction via Noise Masking across the four evaluated settings.
View details
Transducer-Based Streaming Deliberation For A Cascaded Encoder Model
Kevin Hu
Ruoming Pang
ICASSP 2022 (2022) (to appear)
Preview abstract
Previous research on deliberation networks has achieved excellent recognition quality. The attention decoder based deliberation models often works as a rescorer to improve first-pass recognition results, and often requires the full first-pass hypothesis for second-pass deliberation. In this work, we propose a streaming transducer-based deliberation model. The joint network of a transducer decoder often consists of inputs from the encoder and the prediction network. We propose to use attention to the first-pass text hypotheses as the third input to the joint network. The proposed transducer based deliberation model naturally streams, making it more desirable for on-device applications. We also show that the model improves rare word recognition, with relative WER reductions ranging from 3.6% to 10.4% for a variety of test sets. Our model does not use any additional text data for training.
View details
SNRi Target Training for Joint Speech Enhancement and Recognition
Sankaran Panchapagesan
Proc. Interspeech (2022) (to appear)
Preview abstract
Speech enhancement (SE) is used as a frontend in speech applications including automatic speech recognition (ASR) and telecommunication. A difficulty in using the SE frontend is that the appropriate noise reduction level differs depending on applications and/or noise characteristics. In this study, we propose ``{\it signal-to-noise ratio improvement (SNRi) target training}''; the SE frontend is trained to output a signal whose SNRi is controlled by an auxiliary scalar input. In joint training with a backend, the target SNRi value is estimated by an auxiliary network. By training all networks to minimize the backend task loss, we can estimate the appropriate noise reduction level for each noisy input in a data-driven scheme. Our experiments showed that the SNRi target training enables control of the output SNRi. In addition, the proposed joint training relatively reduces word error rate by 4.0\% and 5.7\% compared to a Conformer-based standard ASR model and conventional SE-ASR joint training model, respectively. Furthermore, by analyzing the predicted target SNRi, we observed the jointly trained network automatically controls the target SNRi according to noise characteristics. Audio demos are available in our demo page [google.github.io/df-conformer/snri_target/].
View details
FastEmit: Low-latency Streaming ASR with Sequence-level Emission Regularization
Jiahui Yu
Chung-Cheng Chiu
Wei Han
Anmol Gulati
Ruoming Pang
ICASSP 2021
Preview abstract
Streaming automatic speech recognition (ASR) aims to output each hypothesized word as quickly and accurately as possible. However, reducing latency while retaining accuracy is highly challenging. Existing approaches including Early and Late Penalties~\cite{li2020towards} and Constrained Alignment~\cite{sainath2020emitting} penalize emission delay by manipulating per-token or per-frame RNN-T output logits. While being successful in reducing latency, these approaches lead to significant accuracy degradation. In this work, we propose a sequence-level emission regularization technique, named FastEmit, that applies emission latency regularization directly on the transducer forward-backward probabilities. We demonstrate that FastEmit is more suitable to the sequence-level transducer~\cite{Graves12} training objective for streaming ASR networks. We apply FastEmit on various end-to-end (E2E) ASR networks including RNN-Transducer~\cite{Ryan19}, Transformer-Transducer~\cite{zhang2020transformer}, ConvNet-Transducer~\cite{han2020contextnet} and Conformer-Transducer~\cite{gulati2020conformer}, and achieve 150-300ms latency reduction over previous art without accuracy degradation on a Voice Search test set. FastEmit also improves streaming ASR accuracy from 4.4%/8.9% to 3.1%/7.5% WER, meanwhile reduces 90th percentile latency from 210 ms to only 30 ms on LibriSpeech.
View details
An Efficient Streaming Non-Recurrent On-Device End-to-End Model with Improvements to Rare-Word Modeling
Rami Botros
Ruoming Pang
David Johannes Rybach
James Qin
Quoc-Nam Le-The
Anmol Gulati
Cal Peyser
Chung-Cheng Chiu
Emmanuel Guzman
Jiahui Yu
Qiao Liang
Wei Li
Yu Zhang
Interspeech (2021) (to appear)
Preview abstract
On-device end-to-end (E2E) models have shown improvementsover a conventional model on Search test sets in both quality, as measured by Word Error Rate (WER), and latency, measured by the time the result is finalized after the user stops speaking. However, the E2E model is trained on a small fraction of audio-text pairs compared to the 100 billion text utterances that a conventional language model (LM) is trained with. Thus E2E models perform poorly on rare words and phrases. In this paper, building upon the two-pass streaming Cascaded Encoder E2E model, we explore using a Hybrid Autoregressive Transducer (HAT) factorization to better integrate an on-device neural LM trained on text-only data. Furthermore, to further improve decoder latency we introduce a non-recurrent embedding decoder, in place of the typical LSTM decoder, into the Cascaded Encoder model. Overall, we present a streaming on-device model that incorporates an external neural LM and outperforms the conventional model in both search and rare-word quality, as well as latency, and is 318X smaller.
View details
Improving Streaming ASR with Non-streaming Model Distillation on Unsupervised Data
Chung-Cheng Chiu
Liangliang Cao
Ruoming Pang
Thibault Doutre
Wei Han
Yu Zhang
Zhiyun Lu
ICASSP 2021 (to appear)
Preview abstract
Streaming end-to-end Automatic Speech Recognition (ASR) models are widely used on smart speakers and on-device applications. Since these models are expected to transcribe speech with minimal latency, they are constrained to be causal with no future context, compared to their non-streaming counterparts. Streaming models almost always perform worse than non-streaming models.
We propose a novel and effective learning method by leveraging a non-streaming ASR model as a teacher, generating transcripts on an arbitrary large data set, to better distill knowledge into streaming ASR models. This way, we are able to scale the training of streaming models to 3M hours of YouTube audio. Experiments show that our approach can significantly reduce the Word Error Rate (WER) of RNN-T models in four languages trained from YouTube data.
View details
Personalized Keyphrase Detection using Speaker and Environment Information
Rajeev Vijay Rikhye
Qiao Liang
Ding Zhao
Yiteng (Arden) Huang
Interspeech 2021
Preview abstract
In this paper, we introduce a streaming keyphrase detection system that can be easily customized to accurately detect any phrase composed of words from a large vocabulary. The system is implemented with an end-to-end trained automatic speech recognition (ASR) model and a text-independent speaker verification model. To address the challenge of detecting these keyphrases under various noisy conditions, a speaker separation model is added to the feature frontend of the speaker verification model, and an adaptive noise cancellation (ANC) algorithm is included to exploit the cross-microphone noise coherence. Our experiments show that the text-independent speaker recognition model largely reduces the false triggering rate of the keyphrase detection, while the speaker separation model and adaptive noise cancellation largely reduce false rejections.
View details
Less Is More: Improved RNN-T Decoding Using Limited Label Context and Path Merging
David Johannes Rybach
Sean Campbell
ICASSP 2021, IEEE
Preview abstract
End-to-end models that condition the output sequence on all previously predicted labels have emerged as popular alternatives to conventional systems for automatic speech recognition (ASR). Since distinct label histories correspond to distinct models states, such models are decoded using an approximate beam-search which produces a tree of hypotheses.In this work, we study the influence of the amount of label context on the model’s accuracy, and its impact on the efficiency of the decoding process. We find that we can limit the context of the recurrent neural network transducer (RNN-T) during training to just four previous word-piece labels, without degrading word error rate (WER) relative to the full-context baseline. Limiting context also provides opportunities to improve decoding efficiency by removing redundant paths from the active beam, and instead retaining them in the final lattice. This path-merging scheme can also be applied when decoding the baseline full-context model through an approximation. Overall, we find that the proposed path-merging scheme is extremely effective, allowing us to improve oracle WERs by up to 36% over the baseline, while simultaneously reducing the number of model evaluations by up to 5.3% without any degradation in WER, or up to 15.7% when lattice rescoring is applied.
View details
A Streaming On-Device End-to-End Model Surpassing Server-Side Conventional Model Quality and Latency
Ruoming Pang
Antoine Bruguier
Wei Li
Raziel Alvarez
Chung-Cheng Chiu
David Garcia
Kevin Hu
Minho Jin
Qiao Liang
Cal Peyser
David Rybach
(June) Yuan Shangguan
Yash Sheth
Mirkó Visontai
Yu Zhang
Ding Zhao
ICASSP (2020)
Preview abstract
Thus far, end-to-end (E2E) models have not shown to outperform state-of-the-art conventional models with respect to both quality, i.e., word error rate (WER), and latency, i.e., the time the hypothesis is finalized after the user stops speaking. In this paper, we develop a first-pass Recurrent Neural Network Transducer (RNN-T) model and a second-pass Listen, Attend, Spell (LAS) rescorer that surpasses a conventional model in both quality and latency. On the quality side, we incorporate a large number of utterances across varied domains to increase acoustic diversity and the vocabulary seen by the model. We also train with accented English speech to make the model more robust to different pronunciations. In addition, given the increased amount of training data, we explore a varied learning rate schedule. On the latency front, we explore using the end-of-sentence decision emitted by the RNN-T model to close the microphone, and also introduce various optimizations to improve the speed of LAS rescoring. Overall, we find that RNN-T+LAS offers a better WER and latency tradeoff compared to a conventional model. For example, for the same latency, RNN-T+LAS obtains a 8% relative improvement in WER, while being more than 400-times smaller in model size.
View details
From audio to semantics: Approaches to end-to-end spoken language understanding
Galen Chuang
Pedro Jose Moreno Mengibar
Delia Qu
Spoken Language Technology Workshop (SLT), 2018 IEEE
Preview abstract
Conventional spoken language understanding systems consist of two main components: an automatic speech recognition module that converts audio to text, and a natural language understanding module that transforms the resulting text (or top N hypotheses) into a set of intents and arguments. These modules are typically optimized independently. In this paper, we formulate audio to semantic understanding as a sequence-to-sequence problem. We propose and compare various encoder-decoder based approaches that optimizes both modules jointly, in an end-to-end manner. We evaluate these methods on a real-world task. Our results show that having an intermediate text representation while jointly optimizing the full system improves accuracy of prediction.
View details