Long Zhao
Research Areas
Authored Publications
Sort By
Taming Self-Training for Open-Vocabulary Object Detection
Shiyu Zhao
Samuel Schulter
Zhixing Zhang
Vijay Kumar B G
Yumin Suh
Manmohan Chandraker
Dimitris N. Metaxas
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2024)
Preview abstract
Recent studies have shown promising performance in open-vocabulary object detection (OVD) by utilizing pseudo labels (PLs) from pretrained vision and language models (VLMs). However, teacher-student self-training, a powerful and widely used paradigm to leverage PLs, is rarely explored for OVD. This work identifies two challenges of using self-training in OVD: noisy PLs from VLMs and frequent distribution changes of PLs. To address these challenges, we propose SAS-Det that tames self-training for OVD from two key perspectives. First, we present a split-and-fusion (SAF) head that splits a standard detection into an open-branch and a closed-branch. This design can reduce noisy supervision from pseudo boxes. Moreover, the two branches learn complementary knowledge from different training data, significantly enhancing performance when fused together. Second, in our view, unlike in closed-set tasks, the PL distributions in OVD are solely determined by the teacher model. We introduce a periodic update strategy to decrease the number of updates to the teacher, thereby decreasing the frequency of changes in PL distributions, which stabilizes the training process. Extensive experiments demonstrate SAS-Det is both efficient and effective. SAS-Det outperforms recent models of the same scale by a clear margin and achieves 37.4 AP50 and 29.1 APr on novel categories of the COCO and LVIS benchmarks, respectively.
View details
Unified Visual Relationship Detection with Vision and Language Models
Liangzhe Yuan
Boqing Gong
Yin Cui
International Conference on Computer Vision (ICCV) (2023)
Preview abstract
This work focuses on training a single visual relationship detector predicting over the union of label spaces from multiple datasets. Merging labels spanning different datasets could be challenging due to inconsistent taxonomies. The issue is exacerbated in visual relationship detection when second-order visual semantics are introduced between pairs of objects. To address this challenge, we propose UniVRD, a novel bottom-up method for Unified Visual Relationship Detection by leveraging vision and language models (VLMs). VLMs provide well-aligned image and text embeddings, where similar relationships are optimized to be close to each other for semantic unification. Our bottom-up design enables the model to enjoy the benefit of training with both object detection and visual relationship datasets. Empirical results on both human-object interaction detection and scene-graph generation demonstrate the competitive performance of our model. UniVRD achieves 38.07 mAP on HICO-DET, outperforming the current best bottom-up HOI detector by 14.26 mAP. More importantly, we show that our unified detector performs as well as dataset-specific models in mAP, and achieves further improvements when we scale up the model. Our code will be made publicly available on GitHub.
View details
Preview abstract
We are concerned with a challenging scenario in unpaired multiview video learning. In this case, the model aims to learn comprehensive multiview representations while the cross-view semantic information exhibits variations. We propose Semantics-based Unpaired Multiview Learning (SUM-L) to tackle this unpaired multiview learning problem. The key idea is to build cross-view pseudo-pairs and do view-invariant alignment by leveraging the semantic information of videos. To facilitate the data efficiency of multiview learning, we further perform video-text alignment for first-person and third-person videos, to fully leverage the semantic knowledge to improve video representations. Extensive experiments on multiple benchmark datasets verify the effectiveness of our framework. Our method also outperforms multiple existing view-alignment methods, under the more challenging scenario than typical paired or unpaired multimodal or multiview learning.
View details
View-Invariant, Occlusion-Robust Probabilistic Embedding for Human Pose
Jennifer Jianing Sun
Jiaping Zhao
Liangzhe Yuan
Yuxiao Wang
Liang-Chieh Chen
International Journal of Computer Vision, 130 (2022), pp. 111-135
Preview abstract
Recognition of human poses and actions is crucial for autonomous systems to interact smoothly with people. However, cameras generally capture human poses in 2D as images and videos, which can have significant appearance variations across viewpoints that make the recognition tasks challenging. To address this, we explore recognizing similarity in 3D human body poses from 2D information, which has not been well-studied in existing works. Here, we propose an approach to learning a compact view-invariant embedding space from 2D body joint keypoints, without explicitly predicting 3D poses. Input ambiguities of 2D poses from projection and occlusion are difficult to represent through a deterministic mapping, and therefore we adopt a probabilistic formulation for our embedding space. Experimental results show that our embedding model achieves higher accuracy when retrieving similar poses across different camera views, in comparison with 3D pose estimation models. We also show that by training a simple temporal embedding model, we achieve superior performance on pose sequence retrieval and largely reduce the embedding dimension from stacking frame-based embeddings for efficient large-scale retrieval. Furthermore, in order to enable our embeddings to work with partially visible input, we further investigate different keypoint occlusion augmentation strategies during training. We demonstrate that these occlusion augmentations significantly improve retrieval performance on partial 2D input poses. Results on action recognition and video alignment demonstrate that using our embeddings without any additional training achieves competitive performance relative to other models specifically trained for each task.
View details
Nested Hierarchical Transformer: Towards Accurate, Data-Efficient and Interpretable Visual Understanding
Han Zhang
Ting Chen
AAAI Conference on Artificial Intelligence (AAAI), 2022
Preview abstract
Hierarchical structures are popular in recent vision transformers, however, they require sophisticated designs and massive datasets to work well.
In this paper, we explore the idea of nesting basic local transformers on non-overlapping image blocks and aggregating them in a hierarchical way.
We find that the block aggregation function plays a critical role in enabling cross-block non-local information communication.
This observation leads us to design a simplified architecture that requires minor code changes upon the original vision transformer.
The benefits of the proposed judiciously-selected design are threefold:
(1) NesT converges faster and requires much less training data to achieve good generalization on both ImageNet and small datasets like CIFAR;
(2) when extending our key ideas to image generation, NesT leads to a strong decoder that is 8$\times$ faster than previous transformer-based generators; and
(3) we show that decoupling the feature learning and abstraction processes via this nested hierarchy in our design enables constructing a novel method (named GradCAT) for visually interpreting the learned model. Source code is available https://github.com/google-research/nested-transformer.
View details
Preview abstract
Group Activity Recognition detects the activity collectively performed by a group of actors, which requires compositional reasoning of actors and objects. We approach the task by modeling the video as tokens that represent the multi-scale semantic concepts in the video. We propose COMPOSER, a Multiscale Transformer based architecture that performs attention-based reasoning over tokens at each scale and learns group activity compositionally. In addition, prior works suffer from scene biases with privacy and ethical concerns. We only use the keypoint modality which reduces scene biases and prevents acquiring detailed visual data that may contain private or biased information of users. We improve the multiscale representations in COMPOSER by clustering the intermediate scale representations, while maintaining consistent cluster assignments between scales. Finally, we use techniques such as auxiliary prediction and data augmentations tailored to the keypoint signals to aid model training. We demonstrate the model's strength and interpretability on two widely-used datasets (Volleyball and Collective Activity). COMPOSER achieves up to +5.4% improvement with just the keypoint modality. Code is available at https://github.com/hongluzhou/composer.
View details
Improved Transformer for High-Resolution GANs
Ting Chen
Dimitris N. Metaxas
Han Zhang
Advances in Neural Information Processing Systems (NeurIPS) (2021)
Preview abstract
Attention-based models, exemplified by the Transformer, can effectively model long range dependency, but suffer from the quadratic complexity of self-attention operation, making them difficult to be adopted for high-resolution image generation based on Generative Adversarial Networks (GANs). In this paper, we introduce two key ingredients to Transformer to address this challenge. First, in low-resolution stages of the generative process, standard global self-attention is replaced with the proposed multi-axis blocked self-attention which allows efficient mixing of local and global attention. Second, in high-resolution stages, we drop self-attention while only keeping multi-layer perceptrons reminiscent of the implicit neural function. To further improve the performance, we introduce an additional self-modulation component based on cross-attention. The resulting model, denoted as HiT, has a nearly linear computational complexity with respect to the image size and thus directly scales to synthesizing high definition images. We show in the experiments that the proposed HiT achieves state-of-the-art FID scores of 31.87 and 2.95 on unconditional ImageNet 128x128 and FFHQ 256x256, respectively, with a reasonable throughput. We believe the proposed HiT is an important milestone for generators in GANs which are completely free of convolutions.
View details
Learning View-Disentangled Human Pose Representation by Contrastive Cross-View Mutual Information Maximization
Yuxiao Wang
Jiaping Zhao
Liangzhe Yuan
Jennifer Jianing Sun
Xi Peng
Dimitris N. Metaxas
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021)
Preview abstract
We introduce a novel representation learning method to disentangle pose-dependent as well as view-dependent factors from 2D human poses. The method trains a network using cross-view mutual information maximization (CV-MIM) which maximizes mutual information of the same pose performed from different viewpoints in a contrastive learning manner. We further propose two regularization terms to ensure disentanglement and smoothness of the learned representations. The resulting pose representations can be used for cross-view action recognition. To evaluate the power of the learned representations, in addition to the conventional fully-supervised action recognition settings, we introduce a novel task called single-shot cross-view action recognition. This task trains models with actions from only one single viewpoint while models are evaluated on poses captured from all possible viewpoints. We evaluate the learned representations on standard benchmarks for action recognition, and show that (i) CV-MIM performs competitively compared with the state-of-the-art models in the fully-supervised scenarios;(ii) CV-MIM outperforms other competing methods by a large margin in the single-shot cross-view setting;(iii) and the learned representations can significantly boost the performance when reducing the amount of supervised training data. Our code is made publicly available at https://github. com/google-research/google-research/tree/master/poem.
View details
Preview abstract
Adversarial data augmentation has shown promise for training robust deep neural networks against unforeseen data shifts or corruptions. However, it is difficult to define heuristics to generate effective fictitious target distributions containing "hard" adversarial perturbations that are largely different from the source distribution. In this paper, we propose a novel and effective regularization term for adversarial data augmentation. We theoretically derive it from the information bottleneck principle, which results in a maximum-entropy formulation. Intuitively, this regularization term encourages perturbing the underlying source distribution to enlarge predictive uncertainty of the current model, so that the generated "hard" adversarial perturbations can improve the model robustness during training. Experimental results on three standard benchmarks demonstrate that our method consistently outperforms the existing state of the art by a statistically significant margin.
View details