Andrei Kapishnikov
Authored Publications
Sort By
Beyond Rewards: a Hierarchical Perspective on Offline Multiagent Behavioral Analysis
Shayegan Omidshafiei
Yannick Assogba
Advances in Neural Information Processing Systems (NeurIPS) (2022) (to appear)
Preview abstract
Each year, expert-level performance is attained in increasingly-complex multiagent domains, notable examples including Go, Poker, and StarCraft II. This rapid progression is accompanied by a commensurate need to better understand how such agents attain this performance, to enable their safe deployment, identify limitations, and reveal potential means of improving them. In this paper we take a step back from performance-focused multiagent learning, and instead turn our attention towards agent behavior analysis. We introduce a model-agnostic method for discovery of behavior clusters in multiagent domains, using variational inference to learn a hierarchy of behaviors at the joint and local agent levels. Our framework makes no assumption about agents' underlying learning algorithms, does not require access to their latent states or policies, and is trained using only offline observational data. We illustrate the effectiveness of our method for enabling the coupled understanding of behaviors at the joint and local agent level, detection of behavior changepoints throughout training, discovery of core behavioral concepts, demonstrate the approach's scalability to a high-dimensional multiagent MuJoCo control domain, and also illustrate that the approach can disentangle previously-trained policies in OpenAI's hide-and-seek domain.
View details
Guided Integrated Gradients: An Adaptive Path Method for Removing Noise
Besim Namik Avci
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 5050-5058
Preview abstract
Integrated Gradients (IG) is a commonly used feature attribution method for deep neural networks.
While IG has many desirable properties, when applied to visual models, the method often produces spurious/noisy pixel attributions in regions that are not related to the predicted class. While this has been previously noted, most existing solutions are aimed at addressing the symptoms by explicitly reducing the noise in the resulting attributions. In this work, we show that one of the causes of the problem is the presence of "adversarial examples'' along the IG path. To minimize the effect of adversarial examples on attributions, we propose adapting the attribution path itself. We introduce Adaptive Path Methods (APMs), as a generalization of path methods, and Guided IG as a specific instance of an APM. Empirically, Guided IG creates saliency maps better aligned with the model's prediction and the input image that is being explained. We show through qualitative and quantitative experiments that Guided IG outperforms IG on ImageNet, Open Images, and diabetic retinopathy medical images.
View details
Evaluation of the Use of Combined Artificial Intelligence and Pathologist Assessment to Review and Grade Prostate Biopsies
Kunal Nagpal
Davis J. Foote
Adam Pearce
Samantha Winter
Matthew Symonds
Liron Yatziv
Trissia Brown
Isabelle Flament-Auvigne
Fraser Tan
Martin C. Stumpe
Cameron Chen
Craig Mermel
JAMA Network Open (2020)
Preview abstract
Importance: Expert-level artificial intelligence (AI) algorithms for prostate biopsy grading have recently been developed. However, the potential impact of integrating such algorithms into pathologist workflows remains largely unexplored.
Objective: To evaluate an expert-level AI-based assistive tool when used by pathologists for the grading of prostate biopsies.
Design, Setting, and Participants: This diagnostic study used a fully crossed multiple-reader, multiple-case design to evaluate an AI-based assistive tool for prostate biopsy grading. Retrospective grading of prostate core needle biopsies from 2 independent medical laboratories in the US was performed between October 2019 and January 2020. A total of 20 general pathologists reviewed 240 prostate core needle biopsies from 240 patients. Each pathologist was randomized to 1 of 2 study cohorts. The 2 cohorts reviewed every case in the opposite modality (with AI assistance vs without AI assistance) to each other, with the modality switching after every 10 cases. After a minimum 4-week washout period for each batch, the pathologists reviewed the cases for a second time using the opposite modality. The pathologist-provided grade group for each biopsy was compared with the majority opinion of urologic pathology subspecialists.
Exposure: An AI-based assistive tool for Gleason grading of prostate biopsies.
Main Outcomes and Measures: Agreement between pathologists and subspecialists with and without the use of an AI-based assistive tool for the grading of all prostate biopsies and Gleason grade group 1 biopsies.
Results: Biopsies from 240 patients (median age, 67 years; range, 39-91 years) with a median prostate-specific antigen level of 6.5 ng/mL (range, 0.6-97.0 ng/mL) were included in the analyses. Artificial intelligence–assisted review by pathologists was associated with a 5.6% increase (95% CI, 3.2%-7.9%; P < .001) in agreement with subspecialists (from 69.7% for unassisted reviews to 75.3% for assisted reviews) across all biopsies and a 6.2% increase (95% CI, 2.7%-9.8%; P = .001) in agreement with subspecialists (from 72.3% for unassisted reviews to 78.5% for assisted reviews) for grade group 1 biopsies. A secondary analysis indicated that AI assistance was also associated with improvements in tumor detection, mean review time, mean self-reported confidence, and interpathologist agreement.
Conclusions and Relevance: In this study, the use of an AI-based assistive tool for the review of prostate biopsies was associated with improvements in the quality, efficiency, and consistency of cancer detection and grading.
View details
XRAI: Better Attributions Through Regions
International Conference on Computer Vision 2019 (ICCV) (2019) (to appear)
Preview abstract
Saliency methods can aid understanding of deep neural networks. Recent years have witnessed many improvements to saliency methods, as well as new ways for evaluating them. In this paper, we 1) present a novel region-based attribution method, XRAI, that builds upon integrated gradients (Sundararajan et al. 2017), 2) introduce evaluation methods for empirically assessing the quality of image-based saliency maps (Performance Information Curves (PICs)), and 3) contribute an axiom-based sanity check for attribution methods. Through empirical experiments and example results, we show that XRAI produces better results than other saliency methods for common models and the ImageNet dataset.
View details