Unveiling the Global Landscape of Android Security Updates
Abstract
Android is the world’s leading mobile operating
system, with over three billion active devices. Detecting vulnerabilities and ensuring timely patch deployment are critical to
maintaining security. The Android Open Source Project (AOSP)
has enhanced the transparency of security updates through Security Patch Levels. However, challenges related to update speed
and availability persist. In 2022, Google reported that half of the
zero-day vulnerabilities discovered in the wild were variations of
vulnerabilities that had already been patched. Recent research
mainly highlights delays in update distribution, often attributing
them to fragmentation and focusing primarily on flagship devices
or limited time-frames. Our approach takes a device-centric
perspective to investigate Android update patterns, analyzing
567K security update records from 2014 to 2024, covering 904
distinct devices from six key Original Equipment Manufacturers
(OEMs) across 98 countries. Our extensive analysis revealed
notable differences in update release timing across OEMs, device types, and regions. Our study also examines documented
vulnerabilities and weaknesses, while assessing OEM compliance
with Android security guidelines. Our study shows that ∼89.7%
of vulnerabilities on unpatched Android devices are exploitable
without user interaction and with low attack complexity. We
also identified delays linked to fragmentation and OEM-specific
challenges, and provide actionable insights for improvement.
system, with over three billion active devices. Detecting vulnerabilities and ensuring timely patch deployment are critical to
maintaining security. The Android Open Source Project (AOSP)
has enhanced the transparency of security updates through Security Patch Levels. However, challenges related to update speed
and availability persist. In 2022, Google reported that half of the
zero-day vulnerabilities discovered in the wild were variations of
vulnerabilities that had already been patched. Recent research
mainly highlights delays in update distribution, often attributing
them to fragmentation and focusing primarily on flagship devices
or limited time-frames. Our approach takes a device-centric
perspective to investigate Android update patterns, analyzing
567K security update records from 2014 to 2024, covering 904
distinct devices from six key Original Equipment Manufacturers
(OEMs) across 98 countries. Our extensive analysis revealed
notable differences in update release timing across OEMs, device types, and regions. Our study also examines documented
vulnerabilities and weaknesses, while assessing OEM compliance
with Android security guidelines. Our study shows that ∼89.7%
of vulnerabilities on unpatched Android devices are exploitable
without user interaction and with low attack complexity. We
also identified delays linked to fragmentation and OEM-specific
challenges, and provide actionable insights for improvement.