The Snake Optimizer for Learning Quantum Processor Control Parameters

John M. Martinis
arXiv:2006.04594 (2020)

Abstract

High performance quantum computing requires a calibration system that learns optimal control parameters much faster than system drift. In some cases, the learning procedure requires solving complex optimization problems that are non-convex, high-dimensional, highly constrained, and have astronomical search spaces. Such problems pose an obstacle for scalability since traditional global optimizers are often too inefficient and slow for even small-scale processors comprising tens of qubits. In this whitepaper, we introduce the Snake optimizer for efficiently and quickly solving such optimization problems by leveraging concepts in artificial intelligence, dynamic programming, and graph optimization. In practice, the Snake has been applied to optimize the frequencies at which quantum logic gates are implemented in frequency-tunable superconducting qubits. This application enabled state-of-the-art system performance on a 53 qubit quantum processor, serving as a key component of demonstrating quantum supremacy. Furthermore, since the Snake optimizer scales favorably with qubit number, is amenable to local re-optimization, and is parallelizable, it shows promise for optimizing much larger quantum processors.

Research Areas