Google Research

Text Generation with Text-Editing Models


Text-editing models have recently become a prominent alternative to seq2seq models for monolingual natural language generation (NLG) tasks such as grammatical error correction, text simplification, and style transfer. These tasks exhibit a large amount of textual overlap between the source and target texts. Text-editing models take advantage of this trait and learn to generate the output by predicting edit operations applied to the source sequence in contrast to seq2seq models that generate the output from scratch. Text-editing models provide several benefits over seq2seq models including faster inference speed, higher sample efficiency, and better control and interpretability of the outputs. This tutorial provides a comprehensive overview of the text-edit based approaches and current state-of-the-art models, analyzing the pros and cons of different methods. We discuss challenges related to productionization and how these models can to help mitigate hallucination and bias, both pressing challenges in the field of text generation.

Learn more about how we do research

We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work