Jump to Content

On Optimizing Top-K Metrics for Neural Ranking Models

Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (2022), 2303–2307

Abstract

Top-K metrics such as NDCG@K are frequently used to evaluate ranking performance. The traditional tree-based models such as LambdaMART, which are based on Gradient Boosted Decision Trees (GBDT), are designed to optimize NDCG@K using the LambdaRank losses. Recently, there is a good amount of research interest on neural ranking models for learning-to-rank tasks. These models are fundamentally different from the decision tree models and behave differently with respect to different loss functions. For example, the most popular ranking losses used in neural models are the Softmax loss and the GumbelApproxNDCG loss. These losses do not connect to top-K metrics such as NDCG@K naturally. It remains a question on how to effectively optimize NDCG@K for neural ranking models. In this paper, we follow the LambdaLoss framework and design novel and theoretically sound losses for NDCG@K metrics, while the original LambdaLoss paper can only do so using an unsound heuristic. We study the new losses on the LETOR benchmark datasets and show that the new losses work better than other losses for neural ranking models.