Google Research

Affinity Weighted Embedding

International Conference on Machine Learning (2014)

Abstract

Supervised linear embedding models like Wsabie (Weston et al., 2011) and supervised semantic indexing (Bai et al., 2010) have proven successful at ranking, recommendation and annotation tasks. However, despite being scalable to large datasets they do not take full advantage of the extra data due to their linear nature, and we believe they typically underfit. We propose a new class of models which aim to provide improved performance while retaining many of the benefits of the existing class of embedding models. Our approach works by reweighting each component of the embedding of features and labels with a potentially nonlinear affinity function. We describe several variants of the family, and show its usefulness on several datasets.

Research Areas

Learn more about how we do research

We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work