- Jason Katz-Brown
- Slav Petrov
- Ryan McDonald
- Franz Och
- David Talbot
- Hiroshi Ichikawa
- Masakazu Seno
Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing (EMNLP '11)
We propose a simple training regime that can improve the extrinsic performance of a parser, given only a corpus of sentences and a way to automatically evaluate the extrinsic quality of a candidate parse. We apply our method to train parsers that excel when used as part of a reordering component in a statistical machine translation system. We use a corpus of weakly-labeled reference reorderings to guide parser training. Our best parsers contribute significant improvements in subjective translation quality while their intrinsic attachment scores typically regress.
We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work