Model-agnostic fits for understanding information seeking patterns in humans

Soumya Chatterjee
Google Scholar


In decision making tasks under uncertainty, humans display characteristic biases in seeking, integrating, and acting upon information relevant to the task. Here, we build upon carefully designed experiments, and data collected at scale (Hunt et al. 2016), that measured and catalogued these biases in aggregate form. We design deep learning models that replicate these biases in aggregate, while also capturing individual variation in behavior. A key finding of our work is that paucity of data collected from each individual subject can be over-come by sampling large numbers of subjects form the population, while still capturing individual differences.In addition, we can predict human behavior with high accuracy without making any assumptions about task goals, reward structure, or individual biases, thus providing a model-agnostic fit to human behavior in the task. Such an approach can sidestep potential limitations in modeler-specified inductive biases, and has implications for computational modeling of human cognitive function in general, and of human-AI interfaces in particular.