A Framework for Interactive Machine Learning and Enhanced Conversational Systems

Jerry Young
Richard Abisla
Sanjay Batra
Mikki Phan
Nature, Springer-Verlag (2026)
Google Scholar

Abstract

Conversational systems are increasingly prevalent, yet current versions often fail to support the full range of human speech, including variations in speed, rhythm, syntax, grammar, articulation, and resonance. This reduces their utility for individuals with dysarthria, apraxia, dysphonia, and other language and speech-related disabilities. Building on research that emphasizes the need for specialized datasets and model training tools, our study uses a scaffolded approach to understand the ideal model training and voice recording process. Our findings highlight two distinct user flows for improving model training and provide six guidelines for future conversational system-related co-design frameworks. This study offers important insights on creating more effective conversational systems by emphasizing the need to integrate interactive machine learning into training strategies.
×