Publications

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

people standing in front of a screen with images and a chipboard

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
1 - 15 of 10129 publications
    Preview abstract Effective model calibration is a critical and indispensable component in developing Media Mix Models (MMMs). One advantage of Bayesian-based MMMs lies in their capacity to accommodate the information from experiment results and the modelers' domain knowledge about the ad effectiveness by setting priors for the model parameters. However, it remains ambiguous about how and which Bayesian priors should be tuned for calibration purpose. In this paper, we propose a new calibration method through model reparameterization. The reparameterized model includes Return on Ads Spend (ROAS) as a model parameter, enabling straightforward adjustment of its prior distribution to align with either experiment results or the modeler's prior knowledge. The proposed method also helps address several key challenges regarding combining MMMs and incrementality experiments. We use simulations to demonstrate that our approach can significantly reduce the bias and uncertainty in the resultant posterior ROAS estimates. View details
    Preview abstract Almost no modern software system is written from scratch, and developers are required to effectively learn to use third-party libraries and software services. Thus, many practitioners and researchers have looked for ways to create effective documentation that supports developers’ learning. However, few efforts have focused on how people actually use the documentation. In this paper, we report on an exploratory, multi-phase, mixed methods empirical study of documentation page-view logs from four cloud-based industrial services. By analyzing page-view logs for over 100,000 users, we find diverse patterns of documentation page visits. Moreover, we show statistically that which documentation pages people visit often correlates with user characteristics such as past experience with the specific product, on the one hand, and with future adoption of the API on the other hand. We discuss the implications of these results on documentation design and propose documentation page-view log analysis as a feasible technique for design audits of documentation, from ones written for software developers to ones designed to support end users (e.g., Adobe Photoshop). View details
    Perspective Chapter: Assessment of Subjective and Objective Sleep Quality from Wrist-Worn Wearable Data
    Ben Yetton
    Daniel McDuff
    Andrew Barakat
    Allen Jiang
    Nicholas Allen
    Logan Schneider
    Ari Winbush
    Conor Heneghan
    Preview abstract Researchers are interested in measuring both objective and subjective assessments of sleep, and associated phenomena such as sleepiness, quality and restoration. Predicting perceived sleep quality accurately from objective measurements remains an unsolved and interesting problem. Previous studies using polysomnograms and actigraphy have shown poor concordance between objective metrics and subjective sleep quality, but were often limited by study duration (e.g., one or two nights of PSG, study population in low 100 s). In this chapter, we consider whether consumer sleep trackers could significantly improve the assessment of subjective sleep quality through longer periods of assessment and larger data scale. We describe a recent study that modeled two subjective sleep quality metrics (PROMIS Sleep-Related Impairment (SI) and Sleep Disturbance (SD) Index) from objective sleep metrics acquired from a consumer wearable device (Fitbit). However, the goodness-of-fit parameter remains relatively low, even with the increased data availability and scale of data provided by consumer wearables. Specifically, for a well-characterized normative population of 2106 adults, we see that a linear multivariate model produces an R2 of 0.107 for predicting SI and R2 of 0.147 for SR, consistent with prior results using PSG and actigraphy. We conclude that subjective sleep quality remains broadly a psychological construct that cannot be fully modeled solely by objective sleep metrics. View details
    UINav: A Practical Approach to Train On-Device Automation Agents
    Wei Li
    Fu-Lin Hsu
    Will Bishop
    Folawiyo Campbell-Ajala
    2024 Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL 2024) - Industry Track
    Preview abstract Automation systems that can autonomously drive application user interfaces to complete user tasks are of great benefit, especially when users are situationally or permanently impaired. Prior automation systems do not produce generalizable models while AI-based automation agents work reliably only in simple, hand-crafted applications or incur high computation costs. We propose UINav, a demonstration-based approach to train automation agents that fit mobile devices, yet achieving high success rates with modest numbers of demonstrations. To reduce the demonstration overhead, UINav, uses a referee model that provides users with immediate feedback on tasks where the agent fails, and automatically augments human demonstrations to increase diversity in training data. Our evaluation shows that with only 10 demonstrations UINav, can achieve 70% accuracy, and that with enough demonstrations it can surpass 90% accuracy. View details
    Preview abstract We study the price of anarchy of the generalized second-price auction where bidders are value maximizers (i.e., autobidders). We show that in general the price of anarchy can be as bad as 0. For comparison, the price of anarchy of running VCG is 1/2 in the autobidding world. We further show a fined-grained price of anarchy with respect to the discount factors (i.e., the ratios of click probabilities between lower slots and the highest slot in each auction) in the generalized second-price auction, which highlights the qualitative relation between the smoothness of the discount factors and the efficiency of the generalized second-price auction. View details
    Preview abstract Sequence labeling is a core task in text understanding for IE/IR systems. Text generation models have increasingly become the go-to solution for such tasks (e.g., entity extraction and dialog slot filling). While most research has focused on the labeling accuracy, a key aspect -- of vital practical importance -- has slipped through the cracks: understanding model confidence. More specifically, we lack a principled understanding of how to reliably gauge the confidence of a model in its predictions for each labeled span. This paper aims to provide some empirical insights on estimating model confidence for generative sequence labeling. Most notably, we find that simply using the decoder's output probabilities is not the best in realizing well-calibrated confidence estimates. As verified over six public datasets of different tasks, we show that our proposed approach -- which leverages statistics from top-k predictions by a beam search -- significantly reduces calibration errors of the predictions of a generative sequence labeling model. View details
    Preview abstract Historically, much of machine learning research has focused on the performance of the algorithm alone, but recently more attention has been focused on optimizing joint human-algorithm performance. Here, we analyze a specific type of human-algorithm collaboration where the algorithm has access to a set of $n$ items, and presents a subset of size $k$ to the human, who selects a final item from among those $k$. This scenario could model content recommendation, route planning, or any type of labeling task. Because both the human and algorithm have imperfect, noisy information about the true ordering of items, the key question is: which value of $k$ maximizes the probability that the best item will be ultimately selected? For $k=1$, performance is optimized by the algorithm acting alone, and for $k=n$ it is optimized by the human acting alone. Surprisingly, we show that for multiple of noise models, it is optimal to set $k \in [2, n-1]$ - that is, there are strict benefits to collaborating, even when the human and algorithm have equal accuracy separately. We demonstrate this theoretically for the Mallows model and experimentally for the Random Utilities models of noisy permutations. However, we show this pattern is \emph{reversed} when the human is anchored on the algorithm's presented ordering - the joint system always has strictly worse performance. We extend these results to the case where the human and algorithm differ in their accuracy levels, showing that there always exist regimes where a more accurate agent would strictly benefit from collaborating with a less accurate one, but these regimes are asymmetric between the human and the algorithm's accuracy. View details
    Preview abstract While large, generative, multilingual models are rapidly being developed and deployed, their safety and fairness evaluations primarily hinge on resources collected in the English language and some limited translations. This has been demonstrated to be insufficient, and severely lacking in nuances of unsafe language and stereotypes prevalent in different languages and the geographical pockets they are prevalent in. Gathering these resources, at scale, in varied languages and regions also poses a challenge as it requires expansive sociolinguistic knowledge and can also be prohibitively expensive. We utilize an established methodology of coupling LLM generations with distributed annotations to overcome these gaps and create the resource SeeGULL Multilingual, spanning 20 languages across 23 regions. View details
    Preview abstract With growing machine learning (ML) and large language model applications in healthcare, there have been calls for fairness in ML to understand and mitigate ethical concerns these systems may pose. Fairness has implications for health in Africa, which already has inequitable power imbalances between the Global North and South. This paper seeks to explore fairness for global health, with Africa as a case study. We conduct a scoping review to propose fairness attributes for consideration in the African context and delineate where they may come into play in different ML-enabled medical modalities. We then conduct qualitative research studies with 625 general population study participants in 5 countries in Africa and 28 experts in ML, Health, and/or policy focussed on Africa to obtain feedback on the proposed attributes. We delve specifically into understanding the interplay between AI, health and colonialism. Our findings demonstrate that among experts there is a general mistrust that technologies that are solely developed by former colonizers can benefit Africans, and that associated resource constraints due to pre-existing economic and infrastructure inequities can be linked to colonialism. General population survey responses found about an average of 40% of people associate an undercurrent of colonialism to AI and this was most dominant amongst participants from South Africa. However the majority of the general population participants surveyed did not think there was a direct link between AI and colonialism.Colonial history, country of origin, National income level were specific axes of disparities that participants felt would cause an AI tool to be biased This work serves as a basis for policy development around Artificial Intelligence for health in Africa and can be expanded to other regions. View details
    Generalizing Tree-Level Sap Flow Across the European Continent
    Ralf Loritz
    Chen Huan Wu
    Daniel Klotz
    Martin Gauch
    Frederik Kratzert
    Maoya Bassiouni
    Geophysical Research Letters (2024)
    Preview abstract Sap flow offers key insights about transpiration dynamics and forest-climate interactions. Accurately simulating sap flow remains challenging due to measurement uncertainties and interactions between global and local environmental controls. Addressing these complexities, this study leveraged Long Short-Term Memory networks (LSTMs) with SAPFLUXNET to predict hourly tree-level sap flow across Europe. We built models with diverse training sets to assess performance under previously unseen conditions. The average Kling-Gupta Efficiency was 0.77 for models trained on 50% of time series across all forest stands, and 0.52 for models trained on 50% of the forest stands. Continental models not only matched but surpassed the performance of specialized and baselines for all genera and forest types, showcasing the capacity of LSTMs to effectively generalize across tree genera, climates, and forest ecosystems given minimal inputs. This study underscores the potential of LSTMs in generalizing state-dependent ecohydrological processes and bridging tree level measurements to continental scales. View details
    Using large language models to accelerate communication for eye gaze typing users with ALS
    Subhashini Venugopalan
    Katie Seaver
    Xiang Xiao
    Sri Jalasutram
    Ajit Narayanan
    Bob MacDonald
    Emily Kornman
    Daniel Vance
    Blair Casey
    Steve Gleason
    (2024)
    Preview abstract Accelerating text input in augmentative and alternative communication (AAC) is a long-standing area of research with bearings on the quality of life in individuals with profound motor impairments. Recent advances in large language models (LLMs) pose opportunities for re-thinking strategies for enhanced text entry in AAC. In this paper, we present SpeakFaster, consisting of an LLM-powered user interface for text entry in a highly-abbreviated form, saving 57% more motor actions than traditional predictive keyboards in offline simulation. A pilot study on a mobile device with 19 non-AAC participants demonstrated motor savings in line with simulation and relatively small changes in typing speed. Lab and field testing on two eye-gaze AAC users with amyotrophic lateral sclerosis demonstrated text-entry rates 29–60% above baselines, due to significant saving of expensive keystrokes based on LLM predictions. These findings form a foundation for further exploration of LLM-assisted text entry in AAC and other user interfaces. View details
    Load is not what you should balance: Introducing Prequal
    Bartek Wydrowski
    Bobby Kleinberg
    Steve Rumble
    (2024)
    Preview abstract We present Prequal (\emph{Probing to Reduce Queuing and Latency}), a load balancer for distributed multi-tenant systems. Prequal aims to minimize real-time request latency in the presence of heterogeneous server capacities and non-uniform, time-varying antagonist load. It actively probes server load to leverage the \emph{power of $d$ choices} paradigm, extending it with asynchronous and reusable probes. Cutting against received wisdom, Prequal does not balance CPU load, but instead selects servers according to estimated latency and active requests-in-flight (RIF). We explore its major design features on a testbed system and evaluate it on YouTube, where it has been deployed for more than two years. Prequal has dramatically decreased tail latency, error rates, and resource use, enabling YouTube and other production systems at Google to run at much higher utilization. View details
    Preview abstract Task-oriented queries (e.g., one-shot queries to play videos, order food, or call a taxi) are crucial for assessing the quality of virtual assistants, chatbots, and other large language model (LLM)-based services. However, a standard benchmark for task-oriented queries is not yet available, as existing benchmarks in the relevant NLP (Natural Language Processing) fields have primarily focused on task-oriented dialogues. Thus, we present a new methodology for efficiently generating the Task-oriented Queries Benchmark (ToQB) using existing task-oriented dialogue datasets and an LLM service. Our methodology involves formulating the underlying NLP task to summarize the original intent of a speaker in each dialogue, detailing the key steps to perform the devised NLP task using an LLM service, and outlining a framework for automating a major part of the benchmark generation process. Through a case study encompassing three domains (i.e., two single-task domains and one multi-task domain), we demonstrate how to customize the LLM prompts (e.g., omitting system utterances or speaker labels) for those three domains and characterize the generated task-oriented queries. The generated ToQB dataset is made available to the public.We further discuss new domains that can be added to ToQB by community contributors and its practical applications. View details
    Preview abstract Inter-sentence pauses are the silences that occur between sentences in a paragraph or a dialogue. They are an important aspect of long-form speech prosody, as they can affect the naturalness, intelligibility, and effectiveness of communication. However, the user perception of inter-sentence pauses in long-form speech synthesis is not well understood. Previous work often evaluates pause modelling in conjunction with other prosodic features making it hard to explicitly study how raters perceive differences in inter-sentence pause lengths. In this paper, using multiple text-to-speech (TTS) datasets that cover different content types, domains, and settings, we investigate how sensitive raters are to changes to the durations of inter-sentence pauses in long-form speech by comparing ground truth audio samples with renditions that have manipulated pause durations. This experimental design is meant to allow us to draw conclusions regarding the utility that can be expected from similar evaluations when applied to synthesized long-form speech. We find that, using standard evaluation methodologies, raters are not sensitive to variations in pause lengths unless these deviate exceedingly from the norms or expectations of the speech context. View details
    Using Early Readouts to Mediate Featural Bias in Distillation
    Rishabh Tiwari
    Durga Sivasubramanian
    Anmol Mekala
    Ganesh Ramakrishnan
    WACV 2024 (2024)
    Preview abstract Deep networks tend to learn spurious feature-label correlations in real-world supervised learning tasks. This vulnerability is aggravated in distillation, where a (student) model may have less representational capacity than the corresponding teacher model. Often, knowledge of specific problem features is used to reweight instances & rebalance the learning process. We propose a novel early readout mechanism whereby we attempt to predict the label using representations from earlier network layers. We show that these early readouts automatically identify problem instances or groups in the form of confident, incorrect predictions. We improve group fairness measures across benchmark datasets by leveraging these signals to mediate between teacher logits and supervised label. We extend our results to the closely related but distinct problem of domain generalization, which also critically depends on the quality of learned features. We provide secondary analyses that bring insight into the role of feature learning in supervision and distillation. View details