Publications

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

people standing in front of a screen with images and a chipboard

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
1 - 15 of 10822 publications
    mmMUSE: An mmWave-based Motion-resilient Universal Speech Enhancement System
    Chenming He
    Yanyong Zhang
    Kai Wang
    Dequan Wang
    Lingyu Wang
    the Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT), ACM (2026) (to appear)
    Preview abstract Voice-based smart systems can greatly enhance user experiences by allowing higher-quality interactions through better voice perception. Speech enhancement can benefit such systems by isolating noise from speech. Recently, integrating millimeter-wave (mmWave) with audio for speech perception has gained increasing attention due to microphones' limitations in noisy environments. However, mmWave-based vocal extraction is severely affected by motion, which disperses vocal signals across ranges and introduces distortions. In this paper, we propose an mmWave-based motion-resilient universal speech enhancement system called mmMUSE, which fuses mmWave and audio signals. To mitigate motion interference, we develop a Doppler-based method for motion-robust vocal signal extraction. Moreover, by introducing the Vocal-Noise-Ratio metric to assess the prominence of vocal signals from mmWave, we achieve real-time voice activity detection that gains 3.81 dB of SISDR in noisy speeches. Additionally, we design a two-stage complex-valued network that includes an attention-based fusion network for cross-modal complementing and a time-frequency masking network for correcting amplitude and phase of speech to isolate noises. Using mmWave and audio datasets from 46 participants, mmMUSE outperforms the state-of-the-art speech enhancement models, achieving an average SISDR improvement of 3.12 dB. Additionally, mmMUSE achieves SISDR improvements of 16.51 dB, 17.93 dB, 14.93 dB, and 18.95 dB in controlled environments involving intense noise, extensive motion, multiple speakers, and various obstructive materials, respectively. Finally, we evaluate mmMUSE in real-world scenarios including running, public spaces, and driving, maintaining a word error rate (WER) below 10%. View details
    FreshBrew: A Benchmark for Evaluating AI Agents on Java Code Migration
    Diganta Misra
    Yanqi Luo
    Anjali Sridhar
    Justine Gehring
    Silvio Soares Ribeiro Junior
    2026
    Preview abstract AI coding assistants are rapidly becoming integral to modern software development. A key challenge in this space is the continual need to migrate and modernize codebases in response to evolving software ecosystems. Traditionally, such migrations have relied on rule-based systems and human intervention. With the advent of powerful large language models (LLMs), AI-driven agentic frameworks offer a promising alternative—but their effectiveness remains underexplored. In this paper, we introduce FreshBrew, a novel benchmark for evaluating AI-based agentic frameworks on project-level Java migrations. We benchmark several such frameworks, powered by state-of-the-art LLMs, and compare their performance against established rule-based tools. Our evaluation of AI agents on this benchmark of 228 repositories shows that the top-performing model, Gemini 2.5 Flash, can successfully migrate 56.5% of projects to JDK 17. Our empirical analysis reveals novel insights into the critical strengths and limitations of current agentic approaches, offering actionable insights into their real-world applicability. By releasing FreshBrew publicly upon acceptance, we aim to facilitate rigorous, reproducible evaluation and catalyze progress in AI-driven codebase modernization. View details
    Productionizing Quantum Mass Production
    Bill Huggins
    Nathan Wiebe
    arXiv for now (2026) (to appear)
    Preview abstract For many practical applications of quantum computing, the slowest and most costly steps involve coherently accessing classical data. We help address this challenge by applying mass production techniques, which can sometimes allow us to perform operations many times in parallel for a cost that is comparable to a single execution[1-3]. We combine existing mass-production results with modern approaches for loading classical data using ``quantum read-only memory.'' We show that quantum mass production techniques offer no benefit when we consider a cost model that focuses purely on the number of non-Clifford gates. However, analyzing the constant factors in a more nuanced cost model, we find that it may be possible to obtain a reduction in cost of an order or magnitude or more for a variety reasonably-sized fault-tolerant quantum algorithms. We present several applications of quantum mass-production techniques beyond naive parallelization, including a strategy for reducing the cost of serial calls to the same data loading step. View details
    The vast world of quantum advantage
    Robert Huang
    John Preskill
    Soonwon Choi
    ArXiv (2025)
    Preview abstract The quest to identify quantum advantages, where quantum physics truly outperforms classical physics, lies at the heart of quantum technology. While quantum devices promise extraordinary capabilities, from exponential computational speedups to unprecedented measurement precision, distinguishing genuine advantages from mere illusions remains a formidable challenge. In this endeavor, quantum theorists are like prophets trying to foretell a future where quantum technologies reign supreme. Yet, the boundary between visionary insight and unfounded fantasy is perilously thin. In this perspective, we explore the properties defining an ideal quantum advantage and examine our mathematical tools for navigating the vast world of quantum advantages across computation, learning, sensing, communication, and beyond. We show that some quantum advantages are inherently unpredictable using classical resources alone, suggesting a landscape far richer than what we can currently foresee. While mathematical rigor remains our indispensable guide in this exploration, the ultimate power of quantum technologies may emerge from the quantum advantages we cannot yet conceive. View details
    Spherical dimension
    Bogdan Chornomaz
    Shay Moran
    Tom Waknine
    2025
    Preview abstract We introduce and study the \emph{spherical dimension}, a natural topological relaxation of the VC dimension that unifies several results in learning theory where topology plays a key role in the proofs. The spherical dimension is defined by extending the set of realizable datasets (used to define the VC dimension) to the continuous space of realizable distributions. In this space, a shattered set of size d (in the VC sense) is completed into a continuous object, specifically a d-dimensional sphere of realizable distributions. The spherical dimension is then defined as the dimension of the largest sphere in this space. Thus, the spherical dimension is at least the VC dimension. The spherical dimension serves as a common foundation for leveraging the Borsuk-Ulam theorem and related topological tools. We demonstrate the utility of the spherical dimension in diverse applications, including disambiguations of partial concept classes, reductions from classification to stochastic convex optimization, stability and replicability, and sample compression schemes. Perhaps surprisingly, we show that the open question posed by Alon, Hanneke, Holzman, and Moran (FOCS 2021) of whether there exist non-trivial disambiguations for halfspaces with margin is equivalent to the basic open question of whether the VC and spherical dimensions are finite together. View details
    Position Paper: Graph Learning Loses Relevance Due To Poor Benchmarks
    Maya Bechler-Speicher
    Ben Finkelshtein
    Fabrizio Frasca
    Luis Müller
    Jan Tönshoff
    Antoine Siraudin
    Viktor Zaverkin
    Michael Bronstein
    Mathias Niepert
    Michael Galkin
    Christopher Morris
    2025
    Preview abstract While machine learning on graphs has demonstrated promise in drug design and molecular property prediction, significant benchmarking challenges hinder its further progress and relevance. Current benchmarking practices often lack focus on transformative, real-world applications, favoring narrow domains like two-dimensional molecular graphs over broader, impactful areas such as combinatorial optimization, relational databases, or chip design. Additionally, many benchmark datasets poorly represent the underlying data, leading to inadequate abstractions and misaligned use cases. Fragmented evaluations and an excessive focus on accuracy further exacerbate these issues, incentivizing overfitting rather than fostering generalizable insights. These limitations have prevented the development of truly useful graph foundation models. This position paper calls for a paradigm shift toward more meaningful benchmarks, rigorous evaluation protocols, and stronger collaboration with domain experts to drive impactful and reliable advances in graph learning research, unlocking the potential of graph learning. View details
    StreetReaderAI: Making Street View Accessible Using Context-Aware Multimodal AI
    Alex Fiannaca
    Nimer Jaber
    Victor Tsaran
    Proceedings of the 2025 ACM Symposium on User Interface Software and Technology (UIST'25) (to appear)
    Preview abstract Interactive streetscape mapping tools such as Google Street View (GSV) and Meta Mapillary enable users to virtually navigate and experience real-world environments via immersive 360° imagery but remain fundamentally inaccessible to blind users. We introduce StreetReaderAI, the first-ever accessible street view tool, which combines context-aware, multimodal AI, accessible navigation controls, and conversational speech. With StreetReaderAI, blind users can virtually examine destinations, engage in open-world exploration, or virtually tour any of the over 220 billion images and 100+ countries where GSV is deployed. We iteratively designed StreetReaderAI with a mixed-visual ability team and performed an evaluation with eleven blind users. Our findings demonstrate the value of an accessible street view in supporting POI investigations and remote route planning. We close by enumerating key guidelines for future work. View details
    Differentially Private Synthetic Data Release for Topics API Outputs
    Travis Dick
    Josh Karlin
    Adel Javanmard
    Peilin Zhong
    Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining (2025)
    Preview abstract Recently, significant attention has been devoted to the design and analysis of Privacy-Preserving Ads APIs. Despite the interest of academics and regulators in understanding the privacy properties of such APIs, the empirical study of these methods is severely hindered by the lack of publicly-available data. This is because, a reliable empirical analysis of the privacy properties on an API requires access to a dataset consisting of realistic API outputs for a large collection of users. However, privacy reasons prevent the general release of such browsing data to the public. In this work we address this problem by developing a novel methodology to construct synthetic API outputs that are simultaneously realistic enough to enable accurate study and provide strong privacy protections to the user. We focus on one of the Privacy-Preserving Ads API: the Topics API; part of Google Chrome's Privacy Sandbox which enables interest-based advertising without relying third-party cookies. We develop a methodology to generate a Differentially Private dataset realistic enough to close match the re-identification risk properties of the real Topics API data. The use of differential privacy prevents the leak of private user information from this release. Our methodology is based on first computing a large number of differentially-private statistics describing how output API traces evolve over time. Then, we design a parameterized distribution over sequences of API traces and optimize its parameters so that they closely matches the statistics obtained. Finally, we create the synthetic data by drawing from this distribution. Our work is complemented with an open source release of the anonymized dataset obtained by this methodology. We hope this will enable external researchers to analyze the API in-depth and replicate prior and future work on a realistic large-scale dataset. We believe that this work will contribute to fostering transparency on the privacy properties of Privacy-Preserving Ads APIs. View details
    Preview abstract In modern datasets, where single records can have multiple owners, enforcing user-level differential privacy requires capping each user's total contribution. This "contribution bounding" becomes a significant combinatorial challenge. Existing sequential algorithms for this task are computationally intensive and do not scale to the massive datasets prevalent today. To address this scalability bottleneck, we propose a novel and efficient distributed algorithm. Our approach models the complex ownership structure as a hypergraph, where users are vertices and records are hyperedges. The algorithm proceeds in rounds, allowing users to propose records in parallel. A record is added to the final dataset only if all its owners unanimously agree, thereby ensuring that no user's predefined contribution limit is violated. This method aims to maximize the size of the resulting dataset for high utility while providing a practical, scalable solution for implementing user-level privacy in large, real-world systems. View details
    Preview abstract Buffered Linear Toeplitz (BLT) matrices are a family of parameterized lower-triangular matrices that play an important role in streaming differential privacy with correlated noise. Our main result is a BLT inversion theorem: the inverse of a BLT matrix is itself a BLT matrix with different parameters. We also present an efficient and differentiable O(d^3) algorithm to compute the parameters of the inverse BLT matrix, where d is the degree of the original BLT (typically d < 10). Our characterization enables direct optimization of BLT parameters for privacy mechanisms through automatic differentiation. View details
    Preview abstract We show that there is no randomized LOCAL algorithm for maximal matching (MM) that takes o(min(log D, sqrt(log n))) rounds, even on regular graphs and trees. This improves upon the KMW bound from 21 years ago and shows a surprising separation between MM and MIS on trees, among other implications. View details
    Wave: Offloading Resource Management to SmartNIC Cores
    Jack Humphries
    Neel Natu
    Kostis Kaffes
    Hank Levy
    Christos Kozyrakis
    2025
    Preview abstract SmartNICs are increasingly deployed in datacenters to offload tasks from server CPUs, improving the efficiency and flexibility of datacenter security, networking and storage. Optimizing cloud server efficiency in this way is critically important to ensure that virtually all server resources are available to paying customers. Userspace system software, specifically, decision-making tasks performed by various operating system subsystems, is particularly well suited for execution on mid-tier SmartNIC ARM cores. To this end, we introduce Wave, a framework for offloading userspace system software to processes/agents running on the SmartNIC. Wave uses Linux userspace systems to better align system functionality with SmartNIC capabilities. It also introduces a new host-SmartNIC communication API that enables offloading of even μs-scale system software. To evaluate Wave, we offloaded preexisting userspace system software including kernel thread scheduling, memory management, and an RPC stack to SmartNIC ARM cores, which showed a performance degradation of 1.1%-7.4% in an apples-to-apples comparison with on-host implementations. Wave recovered host resources consumed by on-host system software for memory management (saving 16 host cores), RPCs (saving 8 host cores), and virtual machines (an 11.2% performance improvement). Wave highlights the potential for rethinking system software placement in modern datacenters, unlocking new opportunities for efficiency and scalability. View details
    Preview abstract In the differentially private partition selection problem (a.k.a. private set union, private key discovery), users hold subsets of items from an unbounded universe. The goal is to output as many items as possible from the union of the users' sets while maintaining user-level differential privacy. Solutions to this problem are a core building block for many privacy-preserving ML applications including vocabulary extraction in a private corpus, computing statistics over categorical data and learning embeddings over user-provided items. We propose an algorithm for this problem, MaxAdaptiveDegree(MAD), which adaptively reroutes weight from items with weight far above the threshold needed for privacy to items with smaller weight, thereby increasing the probability that less frequent items are output. Our algorithm can be efficiently implemented in massively parallel computation systems allowing scalability to very large datasets. We prove that our algorithm stochastically dominates the standard parallel algorithm for this problem. We also develop a two-round version of our algorithm, MAD2R, where results of the computation in the first round are used to bias the weighting in the second round to maximize the number of items output. In experiments, our algorithms provide the best results across the board among parallel algorithms and scale to datasets with hundreds of billions of items, up to three orders of magnitude larger than those analyzed by prior sequential algorithms. View details
    Text to 3D Object Generation for Scalable Room Assembly
    Sonia Laguna
    Alberto García García
    Marie-Julie Rakotosaona
    Stylianos Moschoglou
    Leonhard Helminger
    2025
    Preview abstract Modern machine learning models for scene understanding, such as depth estimation and object tracking, rely on large, high-quality datasets that mimic real-world deployment scenarios. To address data scarcity, an end-to-end system for synthetic data generation for scalable, high-quality, and customizable 3D indoor scenes. By integrating text-to-image and multi-view diffusion models with NeRF-based meshing, this system generates high-fidelity 3D assets from text prompts and incorporates them into pre-defined floor plans using a rendering tool, Blender. By incorporating novel loss functions and training strategies into prior existing methods, or method supports on-demand object generation, bridging the domain gap between synthetic and real-world data. This system advances synthetic data’s role in addressing machine learning training limitations, enabling more robust and generalizable models for real-world applications. View details
    Preview abstract This post delves into the shift within enterprise AI, moving from traditional Large Language Models (LLMs) to advanced, goal-oriented AI Agents and sophisticated Multi-Agent Systems (MAS). While individual agents, such as the "Data Agent" in Looker Conversational Analytics, excel at querying specific, governed datasets, they often fall short when addressing complex business challenges that span diverse, isolated systems across departments like Sales, Marketing, and Operations. To overcome these "data silos," we introduce and detail the architecture of a Multi-Agent System. This system, built on the Gemini Enterprise platform and utilizing the Agent Development Kit (ADK), features a Master Agent that coordinates various specialized Sub-Agents (including Data, Jira, and Salesforce agents). This coordination enables the system to independently break down intricate queries, gather validated information from disparate sources, and generate a cohesive, data-driven insight. This innovative architectural approach significantly boosts employee efficiency and effectiveness by automating the laborious process of data integration, thereby empowering users with a unified and intelligent platform. These AI Agents are designed to reason, plan, utilize tools, and autonomously complete complex, multi-step business tasks, with or without human involvement. Organizations globally are prioritizing the integration of AI Agents to enhance the efficiency and effectiveness of their workforce. View details