Publications
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Sort By
1 - 15 of 10795 publications
Preview abstract
AI coding assistants are rapidly becoming integral to modern software development. A key challenge in this space is the continual need to migrate and modernize codebases in response to evolving software ecosystems. Traditionally, such migrations have relied on rule-based systems and human intervention. With the advent of powerful large language models (LLMs), AI-driven agentic frameworks offer a promising alternative—but their effectiveness remains underexplored. In this paper, we introduce FreshBrew, a novel benchmark for evaluating AI-based agentic frameworks on project-level Java migrations. We benchmark several such frameworks, powered by state-of-the-art LLMs, and compare their performance against established rule-based tools. Our evaluation of AI agents on this benchmark of 228 repositories shows that the top-performing model, Gemini 2.5 Flash, can successfully migrate 56.5% of projects to JDK 17. Our empirical analysis reveals novel insights into the critical strengths and limitations of current agentic approaches, offering actionable insights into their real-world applicability. By releasing FreshBrew publicly upon acceptance, we aim to facilitate rigorous, reproducible evaluation and catalyze progress in AI-driven codebase modernization.
View details
Preview abstract
For many practical applications of quantum computing, the slowest and most costly steps involve coherently accessing classical data. We help address this challenge by applying mass production techniques, which can sometimes allow us to perform operations many times in parallel for a cost that is comparable to a single execution[1-3]. We combine existing mass-production results with modern approaches for loading classical data using ``quantum read-only memory.'' We show that quantum mass production techniques offer no benefit when we consider a cost model that focuses purely on the number of non-Clifford gates. However, analyzing the constant factors in a more nuanced cost model, we find that it may be possible to obtain a reduction in cost of an order or magnitude or more for a variety reasonably-sized fault-tolerant quantum algorithms. We present several applications of quantum mass-production techniques beyond naive parallelization, including a strategy for reducing the cost of serial calls to the same data loading step.
View details
Scaling Large Language Models For Next-Generation Single-Cell Analysis
Syed Asad Rizvi
Daniel Levine
Aakash Patel
Shiyang Zhang
Eric Wang
Curtis Jamison Perry
Nicole Mayerli Constante
Sizhuang He
David Zhang
Cerise Tang
Zhuoyang Lyu
Rayyan Darji
Chang Li
Emily Sun
David Jeong
Lawrence Zhao
Jennifer Kwan
David Braun
Brian Hafler
Hattie Chung
Rahul M. Dhodapkar
Paul Jaeger
Jeffrey Ishizuka
David van Dijk
biorxiv (2025)
Preview abstract
Single-cell RNA sequencing has transformed our understanding of cellular diversity, yet current singlecell foundation models (scFMs) remain limited in their scalability, flexibility across diverse tasks, and ability to natively integrate textual information. In this work, we build upon the Cell2Sentence (C2S) framework, which represents scRNA-seq profiles as textual “cell sentences,” to train Large Language Models (LLMs) on a corpus comprising over one billion tokens of transcriptomic data, biological text, and metadata. Scaling the model to 27 billion parameters yields consistent improvements in predictive and generative capabilities and supports advanced downstream tasks that require synthesis of information across multi-cellular contexts. Targeted fine-tuning with modern reinforcement learning techniques produces strong performance in perturbation response prediction, natural language interpretation, and complex biological reasoning. This predictive strength directly enabled a dualcontext virtual screen that uncovered a striking context split for the kinase inhibitor silmitasertib (CX-4945), suggesting its potential as a synergistic, interferon-conditional amplifier of antigen presentation. Experimental validation in human cell models unseen during training confirmed this hypothesis, demonstrating that C2S-Scale can generate biologically grounded, testable discoveries of context-conditioned biology. C2S-Scale unifies transcriptomic and textual data at unprecedented scales, surpassing both specialized single-cell models and general-purpose LLMs to provide a platform for next-generation single-cell analysis and the development of “virtual cells.”
View details
Preview abstract
Hashing is a fundamental operation in various computer sci-
ence applications. Despite the prevalence of specific key
formats like social security numbers, MAC addresses, plate
numbers, and URLs, hashing libraries typically treat them as
general byte sequences. This paper introduces a technique
for synthesizing specialized hash functions tailored to par-
ticular byte formats. The proposed code generation method
leverages three prevalent patterns: (i) fixed-length keys, (ii)
keys with common subsequences, and (iii) keys ranging on
predetermined sequences of bytes. The code generation pro-
cess involves two algorithms: one identifies relevant regular
expressions within key examples, and the other generates
specialized hash functions based on these expressions. This
approach, straightforward to implement, showcases improve-
ments over highly optimized hash function implementations.
Comparative analysis demonstrates that our synthetic func-
tions outperform counterparts in the C++ Standard Template
Library and the Google Abseil Library, achieving speedups
ranging from 2% to 11%, depending on the key format.
View details
Multi-Agent Combinatorial Contracts
Paul Duetting
Tomer Ezra
Michal Feldman
Thomas Kesselheim
Proceedings of the 2025 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2025), pp. 1857 - 1891
Preview abstract
Combinatorial contracts are emerging as a key paradigm in algorithmic contract design, paralleling the role of combinatorial auctions in algorithmic mechanism design. In this paper we study natural combinatorial contract settings involving teams of agents, each capable of performing multiple actions. This scenario extends two fundamental special cases previously examined in the literature, namely the single-agent combinatorial action model of [Duetting et al., 2021] and the multi-agent binary-action model of [Babaioff et al., 2012, Duetting et al., 2023].
We study the algorithmic and computational aspects of these settings, highlighting the unique challenges posed by the absence of certain monotonicity properties essential for analyzing the previous special cases. To navigate these complexities, we introduce a broad set of novel tools that deepen our understanding of combinatorial contracts environments and yield good approximation guarantees.
Our main result is a constant-factor approximation for submodular multi-agent multi-action problems with value and demand oracles access. This result is tight: we show that this problem admits no PTAS (even under binary actions). As a side product of our main result, we devise an FPTAS, with value and demand oracles, for single-agent combinatorial action scenarios with general reward functions, which is of independent interest. We also provide bounds on the gap between the optimal welfare and the principal's utility. We show that, for subadditive rewards, perhaps surprisingly, this gap scales only logarithmically (rather than linearly) in the size of the action space.
View details
Preview abstract
Understanding fine-grained temporal dynamics is crucial in egocentric videos, where continuous streams capture frequent, close-up interactions with objects. In this work, we bring to light that current egocentric video question-answering datasets often include questions that can be answered using only few frames or commonsense reasoning, without being necessarily grounded in the actual video. Our analysis shows that state-of-the-art Multi-Modal Large Language Models (MLLMs) on these benchmarks achieve remarkably high performance using just text or a single frame as input. To address these limitations, we introduce EgoTempo, a dataset specifically designed to evaluate temporal understanding in the egocentric domain. EgoTempo emphasizes tasks that require integrating information across the entire video, ensuring that models would need to rely on temporal patterns rather than static cues or pre-existing knowledge. Extensive experiments on EgoTempo show that current MLLMs still fall short in temporal reasoning on egocentric videos, and thus we hope EgoTempo will catalyze new research in the field and inspire models that better capture the complexity of temporal dynamics. Dataset and code are available at https://github.com/google-research-datasets/egotempo.git.
View details
Not Like Us, Hunty: Measuring Perceptions and Behavioral Effects of Minoritized Anthropomorphic Cues in LLMs
Jeffrey Basoah
Daniel Chechelnitsky
Tao Long
Katharina Reinecke
Chrysoula Zerva
Kaitlyn Zhou
Maarten Sap
Proceedings of the 2025 ACM Conference on Fairness, Accountability, and Transparency, ACM (2025), pp. 710-745
Preview abstract
As large language models (LLMs) increasingly adapt and personalize to diverse sets of users, there is an increased risk of systems appropriating sociolects, i.e., language styles or dialects that are associated with specific minoritized lived experiences (e.g., African American
English, Queer slang). In this work, we examine whether sociolect usage by a LLM agent affects user reliance on its outputs and user perception (satisfaction, frustration, trust, and social presence). We designed and conducted user studies where 498 African American English (AAE) speakers and 487 Queer slang speakers performed a set of question-answering tasks with LLM-based suggestions in either standard American English (SAE) or their self-identified sociolect.
Our findings showed that sociolect usage by LLMs influenced both reliance and perceptions, though in some surprising ways. Results suggest that both AAE and Queer slang speakers relied more on the SAELM, and had more positive perceptions of the SAELM. Yet, only Queer slang speakers felt more social presence from the QSLM over the SAE one, whereas only AAE speakers preferred and trusted the SAELM over the AAE one. These findings emphasize the need to test for behavioral outcomes rather than simply assume that personalization would lead to a better and safer reliance outcome. They also highlight the nuanced dynamics of minoritized language in machine interactions, underscoring the need for LLMs to be carefully designed to respect cultural and linguistic boundaries while fostering genuine user engagement and trust.
View details
Preview abstract
Large language models (LLMs) require significant memory to store Key-Value (KV) embeddings in their KV cache, especially when handling long-range contexts. Quantization of these KV embeddings is a common technique to reduce memory consumption.
This work introduces PolarQuant, a novel quantization method employing random preconditioning and polar transformation. Our method first preconditions the embedding vectors using a random projection matrix. Then, we transform these vectors into polar coordinates and quantize the resulting polar representation.
Our key insight is that, after random preconditioning, the angles in the polar representation exhibit a tightly bounded and concentrated distribution with an analytically computable form. This eliminates the need for explicit normalization, a computationally expensive step required by traditional quantization methods.
Normalization introduces significant memory overhead because quantization parameters (e.g., zero point and scale) must be stored in full precision for each data block. This can add 1 to 2 bits per quantized value, depending on the block size. PolarQuant bypasses this normalization step, enabling substantial memory savings.
Empirical evaluation demonstrates that PolarQuant achieves lower memory overheads than existing normalization-based KV quantization techniques. Moreover, it improves performance across various generation tasks, particularly those involving long-context understanding.
View details
Linear Elastic Caching via Ski Rental
Todd Lipcon
The biennial Conference on Innovative Data Systems Research (2025)
Preview abstract
In this work we study the Linear Elastic Caching problem, where the goal is to minimize the total cost of a cache inclusive of not just its misses, but also its memory footprint integrated over time. We demonstrate a theoretical connection to the classic ski rental problem and propose a practical algorithm that combines online caching algorithms with ski rental policies. We also introduce a lightweight machine learning-based algorithm for ski rental that is optimized for production workloads and is easy to integrate within existing database systems. Evaluations on both production workloads in Google Spanner and publicly available traces show that the proposed elastic caching approach can significantly reduce the total cache cost compared to traditional fixed-size cache policies.
View details
Preview abstract
This tutorial examines the progress and scaling limitations of IM-DD based optical technologies and explores how datacenter use cases optimized coherent technology, including a newly proposed polarization-folding, time-diversity approach and a novel single-sideband coherent detection technology—can address some of these challenges
View details
Preview abstract
As part of Google's ongoing efforts to define best practices for secure AI systems, we’re sharing our aspirational framework for secure AI agents. We advocate for a hybrid, defense-in-depth strategy that combines the strengths of traditional, deterministic security controls with dynamic, reasoning-based defenses. This approach is grounded in three core principles: agents must have well-defined human controllers, their powers must be carefully limited, and their actions and planning must be observable. This paper reflects our current thinking and the direction of our efforts as we work towards ensuring that AI agents can be powerful, useful, and secure by default.
View details
Preview abstract
Styled Handwritten Text Generation (HTG) has recently received attention from the computer vision and document analysis communities, which have developed several solutions, either GAN- or diffusion-based, that achieved promising results. Nonetheless, these strategies fail to generalize to novel styles and have technical constraints, particularly in terms of maximum output length and training efficiency. To overcome these limitations, in this work, we propose a novel framework for text image generation, dubbed Emuru. Our approach leverages a powerful text image representation model (a variational autoencoder) combined with an autoregressive Transformer. Our approach enables the generation of styled text images conditioned on textual content and style examples, such as specific fonts or handwriting styles. We train our model solely on a diverse, synthetic dataset of English text rendered in over 100,000 typewritten and calligraphy fonts, which gives it the capability to reproduce unseen styles (both fonts and users' handwriting) in zero-shot. To the best of our knowledge, Emuru is the first autoregressive model for HTG, and the first designed specifically for generalization to novel styles. Moreover, our model generates images without background artifacts, which are easier to use for downstream applications. Extensive evaluation on both typewritten and handwritten, any-length text image generation scenarios demonstrates the effectiveness of our approach.
View details
Preview abstract
Google has a long tradition of open-source software, which encompasses the field of operations research with OR-Tools. In development since 2008, it offers several solvers useful to many OR practitioners:
- PDLP, a revolutionary first-order linear solver that is reshaping the landscape of linear optimisation;
- CP-SAT, an award-winning constraint-programming solver;
- Glop, an accurate linear solver;
- Routing, a vehicle routing solver underpinning Google Maps Platform Route Optimization.
OR-Tools has long had its features accessible from other languages: the core algorithms are implemented in C++ for performance, but users can tap into them in Python, Java, C#, or Go.
It is recently available in Julia too, with a current focus on the linear and constraint solvers, either locally or remotely.
We provide a wrapper for our solvers that brings them to JuMP.jl through MathOptInterface.jl.
This tutorial will walk you through the features of OR-Tools and its solvers, then show examples of using OR-Tools from within Julia, either through JuMP or a lower-level interface.
We will also share our experience of C++-Julia interop.
View details
Passive Heart Rate Monitoring During Smartphone Use in Everyday Life
Shun Liao
Paolo Di Achille
Jiang Wu
Silviu Borac
Jonathan Wang
Eric Teasley
Lawrence Cai
Daniel McDuff
Hao-Wei Su
Brent Winslow
Anupam Pathak
Shwetak Patel
Jim Taylor
Jamie Rogers
(2025)
Preview abstract
Resting heart rate (RHR) is an important biomarker of cardiovascular health and mortality, but tracking it longitudinally generally requires a wearable device, limiting its availability. We present PHRM, a deep learning system for passive heart rate (HR) and RHR measurements during ordinary smartphone use, using facial video-based photoplethysmography. Our system was developed using 225,773 videos from 495 participants and validated on 185,970 videos from 205 participants in laboratory and free-living conditions – the largest validation study of its kind. Compared to reference electrocardiogram, PHRM achieved a mean absolute percentage error (MAPE) <10% for HR measurements across three skin tone groups of light, medium and dark pigmentation; MAPE for each skin tone group was non-inferior versus the others. Daily RHR measured by PHRM had a mean absolute error <5 bpm compared to a wearable HR tracker, and was associated with known risk factors. These results highlight the potential of smartphones to enable passive and equitable heart health monitoring.
View details
Enhancing Performance of the Tesseract Decoder for Quantum Error Correction
DRAGANA GRBIC
Laleh Beni
Noah Shutty
2025
Preview abstract
In this paper I describe the performance enchantments I implemented in a quantum-error-correction decoder developed at Google. The decoder is an open-source project and I am documenting the speedups I achieved in this paper.
View details