Publications

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

people standing in front of a screen with images and a chipboard

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
1 - 15 of 10473 publications
    Preview abstract Virtual hand representation in Head-Mounted Displays (HMDs) offers immersive and intuitive interactions in Virtual Reality (VR). However, current hand tracking algorithms are prone to errors, which can disrupt the user experience and hinder task performance. This paper presents a novel method for providing users with visual feedback when the quality of hand tracking decreases. Our approach employs a notification modal that warns users of potential failures. We identified three common hand tracking failure scenarios and evaluated the effectiveness of our method in two distinct VR tasks: object manipulation and complex assembly tasks. Results show that our early warning system reduces task completion time, lowers hand-tracking failures by up to 83%, decreases errors, improves system usability, and reduces cognitive load. This work contributes to the development of more robust and user-friendly VR HMD applications by enhancing hand tracking reliability, usability, and workload. View details
    Preview abstract Understanding fine-grained temporal dynamics is crucial in egocentric videos, where continuous streams capture frequent, close-up interactions with objects. In this work, we bring to light that current egocentric video question-answering datasets often include questions that can be answered using only few frames or commonsense reasoning, without being necessarily grounded in the actual video. Our analysis shows that state-of-the-art Multi-Modal Large Language Models (MLLMs) on these benchmarks achieve remarkably high performance using just text or a single frame as input. To address these limitations, we introduce EgoTempo, a dataset specifically designed to evaluate temporal understanding in the egocentric domain. EgoTempo emphasizes tasks that require integrating information across the entire video, ensuring that models would need to rely on temporal patterns rather than static cues or pre-existing knowledge. Extensive experiments on EgoTempo show that current MLLMs still fall short in temporal reasoning on egocentric videos, and thus we hope EgoTempo will catalyze new research in the field and inspire models that better capture the complexity of temporal dynamics. Dataset and code are available at https://github.com/google-research-datasets/egotempo.git. View details
    Preview abstract Specific quantum algorithms exist to—in theory— break elliptic curve cryptographic protocols. Implementing these algorithms requires designing quantum circuits that perform elliptic curve arithmetic. To accurately judge a cryptographic protocol’s resistance against future quantum computers, researchers figure out minimal resource-count circuits for performing these operations while still being correct. To assure the correctness of a circuit, it is integral to restore all ancilla qubits used to their original states. Failure to do so could result in decoherence of the computation’s final result. Through rigorous classical simulation and unit testing, I surfaced four inconsistencies in the state-ofthe-art quantum circuit for elliptic curve point addition where the circuit diagram states the qubits are returned in the original (|0⟩) state, but the intermediate values are not uncomputed. I provide fixes to the circuit without increasing the leading-order gate cost. View details
    Automated loss of pulse detection on a commercial smartwatch
    Kamal Shah
    Anran Wang
    Yiwen Chen
    Anthony Stange
    Lawrence Cai
    Matt Wimmer
    Pramod Rudrapatna
    Shelten Yuen
    Anupam Pathak
    Shwetak Patel
    Mark Malhotra
    Marc Stogaitis
    Jeanie Phan
    Ali Connell
    Jim Taylor
    Jacqueline Shreibati
    Daniel McDuff
    Tajinder Gadh
    Jake Sunshine
    Nature, 642 (2025), pp. 174-181
    Preview abstract Out-of-hospital cardiac arrest is a time-sensitive emergency that requires prompt identification and intervention: sudden, unwitnessed cardiac arrest is nearly unsurvivable. A cardinal sign of cardiac arrest is sudden loss of pulse. Automated biosensor detection of unwitnessed cardiac arrest, and dispatch of medical assistance, may improve survivability given the substantial prognostic role of time, but only if the false-positive burden on public emergency medical systems is minimized. Here we show that a multimodal, machine learning-based algorithm on a smartwatch can reach performance thresholds making it deployable at a societal scale. First, using photoplethysmography, we show that wearable photoplethysmography measurements of peripheral pulselessness (induced through an arterial occlusion model) manifest similarly to pulselessness caused by a common cardiac arrest arrhythmia, ventricular fibrillation. On the basis of the similarity of the photoplethysmography signal (from ventricular fibrillation or arterial occlusion), we developed and validated a loss of pulse detection algorithm using data from peripheral pulselessness and free-living conditions. Following its development, we evaluated the end-to-end algorithm prospectively: there was 1 unintentional emergency call per 21.67 user-years across two prospective studies; the sensitivity was 67.23% (95% confidence interval of 64.32% to 70.05%) in a prospective arterial occlusion cardiac arrest simulation model. These results indicate an opportunity, deployable at scale, for wearable-based detection of sudden loss of pulse while minimizing societal costs of excess false detections. View details
    Gemini & Physical World: Large Language Models Can Estimate the Intensity of Earthquake Shaking from Multi-Modal Social Media Posts
    Marc Stogaitis
    Tajinder Gadh
    Richard Allen
    Alexei Barski
    Robert Bosch
    Patrick Robertson
    Youngmin Cho
    Nivetha Thiruverahan
    Aman Raj
    Geophysical Journal International (2025), ggae436
    Preview abstract This paper presents a novel approach for estimating the ground shaking intensity using real-time social media data and CCTV footage. Employing the Gemini 1.5 Pro’s (Reid et al. 2024) model, a multi-modal language model, we demonstrate the ability to extract relevant information from unstructured data utilizing generative AI and natural language processing. The model’s output, in the form of Modified Mercalli Intensity (MMI) values, align well with independent observational data. Furthermore, our results suggest that beyond its advanced visual and auditory understanding abilities, Gemini appears to utilize additional sources of knowledge, including a simplified understanding of the general relationship between earthquake magnitude, distance, and MMI intensity, which it presumably acquired during its training, in its reasoning and decision-making processes. These findings raise intriguing questions about the extent of Gemini's general understanding of the physical world and its phenomena. Gemini’s ability to generate results consistent with established scientific knowledge highlights the potential of LLMs like Gemini in augmenting our understanding of complex physical phenomena such as earthquakes. More specifically, the results of this study highlight the potential of LLMs like Gemini to revolutionize citizen seismology by enabling rapid, effective, and flexible analysis of crowdsourced data from eyewitness accounts for assessing earthquake impact and providing crisis situational awareness. This approach holds a great promise for improving early warning systems, disaster response, and overall resilience in earthquake-prone regions. This study provides a significant step toward harnessing the power of social media and AI for earthquake disaster mitigation. View details
    Software development is a team sport
    Jie Chen
    Alison Chang
    Rayven Plaza
    Marie Huber
    Claire Taylor
    IEEE Software (2025)
    Preview abstract In this article, we describe our human-centered research focused on understanding the role of collaboration and teamwork in productive software development. We describe creation of a logs-based metric to identify collaboration through observable events and a survey-based multi-item scale to assess team functioning. View details
    A Scalable Framework for Evaluating Health Language Models
    Neil Mallinar
    Tony Faranesh
    Brent Winslow
    Nova Hammerquist
    Ben Graef
    Cathy Speed
    Mark Malhotra
    Shwetak Patel
    Xavi Prieto
    Daniel McDuff
    Ahmed Metwally
    (2025)
    Preview abstract Large language models (LLMs) have emerged as powerful tools for analyzing complex datasets. Recent studies demonstrate their potential to generate useful, personalized responses when provided with patient-specific health information that encompasses lifestyle, biomarkers, and context. As LLM-driven health applications are increasingly adopted, rigorous and efficient one-sided evaluation methodologies are crucial to ensure response quality across multiple dimensions, including accuracy, personalization and safety. Current evaluation practices for open-ended text responses heavily rely on human experts. This approach introduces human factors and is often cost-prohibitive, labor-intensive, and hinders scalability, especially in complex domains like healthcare where response assessment necessitates domain expertise and considers multifaceted patient data. In this work, we introduce Adaptive Precise Boolean rubrics: an evaluation framework that streamlines human and automated evaluation of open-ended questions by identifying gaps in model responses using a minimal set of targeted rubrics questions. Our approach is based on recent work in more general evaluation settings that contrasts a smaller set of complex evaluation targets with a larger set of more precise, granular targets answerable with simple boolean responses. We validate this approach in metabolic health, a domain encompassing diabetes, cardiovascular disease, and obesity. Our results demonstrate that Adaptive Precise Boolean rubrics yield higher inter-rater agreement among expert and non-expert human evaluators, and in automated assessments, compared to traditional Likert scales, while requiring approximately half the evaluation time of Likert-based methods. This enhanced efficiency, particularly in automated evaluation and non-expert contributions, paves the way for more extensive and cost-effective evaluation of LLMs in health. View details
    Mufu: Multilingual Fused Learning for Low- Resource Translation with LLM
    Zheng Lim
    Honglin Yu
    Trevor Cohn
    International Conference on Learning Representations (ICLR) 2025
    Preview abstract Multilingual large language models (LLMs) are great translators, but this is largely limited to high-resource languages. For many LLMs, translating in and out of low-resource languages remains a challenging task. To maximize data efficiency in this low-resource setting, we introduce Mufu, which includes a selection of automatically generated multilingual candidates and an instruction to correct inaccurate translations in the prompt. Mufu prompts turn a translation task into a postediting one, and seek to harness the LLM's reasoning capability with auxiliary translation candidates, from which the model is required to assess the input quality, align the semantics cross-lingually, copy from relevant inputs and override instances that are incorrect. Our experiments on En-XX translations over the Flores-200 dataset show LLMs finetuned against Mufu-style prompts are robust to poor quality auxiliary translation candidates, achieving performance superior to NLLB 1.3B distilled model in 64% of low- and very-low-resource language pairs. We then distill these models to reduce inference cost, while maintaining on average 3.1 chrF improvement over finetune-only baseline in low-resource translations. View details
    Validation of a Deep Learning Model for Diabetic Retinopathy on Patients with Young-Onset Diabetes
    Tony Tan-Torres
    Pradeep Praveen
    Divleen Jeji
    Arthur Brant
    Xiang Yin
    Lu Yang
    Tayyeba Ali
    Ilana Traynis
    Dushyantsinh Jadeja
    Rajroshan Sawhney
    Sunny Virmani
    Pradeep Venkatesh
    Nikhil Tandon
    Ophthalmology and Therapy (2025)
    Preview abstract Introduction While many deep learning systems (DLSs) for diabetic retinopathy (DR) have been developed and validated on cohorts with an average age of 50s or older, fewer studies have examined younger individuals. This study aimed to understand DLS performance for younger individuals, who tend to display anatomic differences, such as prominent retinal sheen. This sheen can be mistaken for exudates or cotton wool spots, and potentially confound DLSs. Methods This was a prospective cross-sectional cohort study in a “Diabetes of young” clinic in India, enrolling 321 individuals between ages 18 and 45 (98.8% with type 1 diabetes). Participants had fundus photographs taken and the photos were adjudicated by experienced graders to obtain reference DR grades. We defined a younger cohort (age 18–25) and an older cohort (age 26–45) and examined differences in DLS performance between the two cohorts. The main outcome measures were sensitivity and specificity for DR. Results Eye-level sensitivity for moderate-or-worse DR was 97.6% [95% confidence interval (CI) 91.2, 98.2] for the younger cohort and 94.0% [88.8, 98.1] for the older cohort (p = 0.418 for difference). The specificity for moderate-or-worse DR significantly differed between the younger and older cohorts, 97.9% [95.9, 99.3] and 92.1% [87.6, 96.0], respectively (p = 0.008). Similar trends were observed for diabetic macular edema (DME); sensitivity was 79.0% [57.9, 93.6] for the younger cohort and 77.5% [60.8, 90.6] for the older cohort (p = 0.893), whereas specificity was 97.0% [94.5, 99.0] and 92.0% [88.2, 95.5] (p = 0.018). Retinal sheen presence (94% of images) was associated with DME presence (p < 0.0001). Image review suggested that sheen presence confounded reference DME status, increasing noise in the labels and depressing measured sensitivity. The gradability rate for both DR and DME was near-perfect (99% for both). Conclusion DLS-based DR screening performed well in younger individuals aged 18–25, with comparable sensitivity and higher specificity compared to individuals aged 26–45. Sheen presence in this cohort made identification of DME difficult for graders and depressed measured DLS sensitivity; additional studies incorporating optical coherence tomography may improve accuracy of measuring DLS DME sensitivity. View details
    MaRVL-QA: A Benchmark for Mathematical Reasoning over Visual Landscapes
    Nilay Pande
    Sahiti Yerramilli
    Jayant Tamarapalli
    Rynaa Grover
    (2025)
    Preview abstract A key frontier for Multimodal Large Language Models (MLLMs) is the ability to perform deep mathematical and spatial reasoning directly from images, moving beyond their established success in semantic description. Mathematical surface plots provide a rigorous testbed for this capability, as they isolate the task of reasoning from the semantic noise common in natural images. To measure progress on this frontier, we introduce MaRVL (Mathematical Reasoning over Visual Landscapes), a new benchmark designed to quantitatively evaluate these core reasoning skills. The benchmark comprises two novel tasks: Topological Counting, identifying and enumerating features like local maxima; and Transformation Recognition, recognizing applied geometric transformations. Generated from a curated library of functions with rigorous ambiguity filtering, our evaluation on MaRVL reveals that even state-of-the-art MLLMs struggle significantly, often resorting to superficial heuristics instead of robust spatial reasoning. MaRVL provides a challenging new tool for the research community to measure progress, expose model limitations, and guide the development of MLLMs with more profound reasoning abilities. View details
    Beyond Digital Literacy: Building Youth Digital Resilience Through Existing “Information Sensibility” Practices
    Mia Hassoun
    Ian Beacock
    Todd Carmody
    Patrick Gage Kelley
    Beth Goldberg
    Devika Kumar
    Laura Murray
    Rebekah Park
    Behzad Sarmadi
    Social Sciences Journal, 14(4) (2025)
    Preview abstract Youth media consumption and disordered eating practices have historically been subjects of moral panics, often resulting in protective, deficit-based interventions like content removal. We argue for interventions which instead equip youth to evaluate and manage risks in their online environments, building upon their existing “information sensibility” practices. Drawing upon ethnographic research and intervention testing with 77 participants in the US and India, we analyze how youth (aged 13–26), including those with diverse political perspectives and those recovering from disordered eating (DE), engage with online news and health information. Participants generally algorithmically encountered (rather than searched for) information online, and their engagement was shaped more by social motivations—like belonging—than truth seeking. Participants interpreted online information collaboratively, relying on social cues and peer validation within their online communities. They demonstrated preference for personal testimonies and relatable sources, particularly those with similar social identities. We propose resilience-building interventions that build upon these youth online information practices by: (1) leveraging peer networks, promoting critical information engagement through collaborative learning and peer-to-peer support within online communities; (2) developing social media sensibility, equipping youth to critically evaluate information sources in situ; (3) providing pathways offline, connecting youth to desired in-person communities; and (4) encouraging probabilistic thinking. View details
    Leveraging Per-Example Privacy for Machine Unlearning
    Nazanin Mohammadi Sepahvand
    Anvith Thudi
    Ashmita Bhattacharyya
    Nicolas Papernot
    Eleni Triantafillou
    Daniel M. Roy
    Karolina Dziugaite
    International Conference on Machine Learning (ICML) (2025)
    Preview abstract This work focuses on developing fine-grained theoretical insights to quantify unlearning difficulty at the level of individual data points for fine-tuning-based unlearning. Unlike other unlearning methods that lack theoretical guarantees for non-convex models, our approach builds on recent advances in differential privacy to provide per-instance guarantees using Rényi divergence. While our theoretical analysis applies to Langevin dynamics, we empirically demonstrate that the derived guarantees—and their trends—continue to hold for fine-tuning, even in the absence of explicit noise. Our results show that per-instance privacy levels computed from training dynamics reliably predict unlearning difficulty, offering a principled and practical way to assess unlearning performance. Furthermore, our method identifies harder-to-unlearn data more effectively than existing heuristics, providing a more precise tool for guiding unlearning strategies. These findings pave the way for adaptive and efficient unlearning methods tailored to the properties of specific data points. View details
    Reconfigurable Stream Network Architecture
    Chengyue Wang
    Jason Cong
    James Hoe
    International Symposium on Computer Architecture (ISCA) (2025)
    Preview abstract As AI systems grow increasingly specialized and complex, managing hardware heterogeneity becomes a pressing challenge. How can we efficiently coordinate and synchronize heterogeneous hardware resources to achieve high utilization? How can we minimize the friction of transitioning between diverse computation phases, reducing costly stalls from initialization, pipeline setup, or drain? Our insight is that a network abstraction at the ISA level naturally unifies heterogeneous resource orchestration and phase transitions. This paper presents a Reconfigurable Stream Network Architecture (RSN), a novel ISA abstraction designed for the DNN domain. RSN models the datapath as a circuit-switched network with stateful functional units as nodes and data streaming on the edges. Programming a computation corresponds to triggering a path. Software is explicitly exposed to the compute and communication latency of each functional unit, enabling precise control over data movement for optimizations such as compute-communication overlap and layer fusion. As nodes in a network naturally differ, the RSN abstraction can efficiently virtualize heterogeneous hardware resources by separating control from the data plane, enabling low instruction-level intervention. We build a proof-of-concept design RSN-XNN on VCK190, a heterogeneous platform with FPGA fabric and AI engines. Compared to the SOTA solution on this platform, it reduces latency by 6.1x and improves throughput by 2.4x-3.2x. Compared to the T4 GPU with the same FP32 performance, it matches latency with only 18% of the memory bandwidth. Compared to the A100 GPU at the same 7nm process node, it achieves 2.1x higher energy efficiency in FP32. View details
    Preview abstract Measuring productivity is equivalent to building a model. All models are wrong, but some are useful. Productivity models are often “worryingly selective” (wrong because of omissions). Worrying selectivity can be combated by taking a holistic approach that includes multiple measurements of multiple outcomes. Productivity models should include multiple outcomes, metrics, and methods. View details
    Preview abstract This IEEE Spectrum article reflects on advocacy for U.S. technological leadership during my Congressional visit through IEEE-USA. Leading an expert group of other distinguished IEEE members, we urged lawmakers to support critical initiatives. Key priorities included sustained funding for federal research institutions like NIST, NASA, and the NSF, reauthorizing the SBIR/STTR programs vital for small business innovation, and passing the CREATE AI Act to democratize AI resources by establishing the National AI Research Resource (NAIRR). We also emphasized strengthening the STEM talent pipeline through the CHIPS and Science Act and expanding high-skilled immigrant visas. We highlighted rapid AI advancements, such as autonomous vehicles, the surge in FDA-approved AI based medical devices, as underscoring the need for these strategic investments and policy actions. The article conveys a sense of urgency, calling for concrete congressional action to ensure the U.S. maintains its technological edge while also sharing my personal experiences. View details