Publications

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

people standing in front of a screen with images and a chipboard

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
1 - 15 of 11082 publications
    A Computer Vision Problem in Flatland
    Erin Connelly
    Annalisa Crannell
    Timothy Duff
    Rekha R. Thomas
    SIAM Journal on Applied Algebra and Geometry, 10 (2026), pp. 14-45
    Preview abstract When is it possible to project two sets of labeled points of equal cardinality lying in a pair of projective planes to the same image on a projective line? We give a complete answer to this question, obtaining the following results. We first show that such a pair of projections exist if and only if the two point sets are themselves images of a common point set in projective space. Moreover, we find that for generic pairs of point sets, a common projection exists if and only if their cardinality is at most seven. In these cases, we give an explicit description of the loci of projection centers that enable a common image. View details
    Preview abstract Semantic data models express high-level business concepts and metrics, capturing the business logic needed to query a database correctly. Most data modeling solutions are built as layers above SQL query engines, with bespoke query languages or APIs. The layered approach means that semantic models can’t be used directly in SQL queries. This paper focuses on an open problem in this space – can we define semantic models in SQL, and make them naturally queryable in SQL? In parallel, graph query is becoming increasingly popular, including in SQL. SQL/PGQ extends SQL with an embedded subset of the GQL graph query language, adding property graph views and making graph traversal queries easy. We explore a surprising connection: semantic data models are graphs, and defining graphs is a data modeling problem. In both domains, users start by defining a graph model, and need query language support to easily traverse edges in the graph, which means doing joins in the underlying data. We propose some useful SQL extensions that make it easier to use higher-level data model abstractions in queries. Users can define a “semantic data graph” view of their data, encapsulating the complex business logic required to query the underlying tables correctly. Then they can query that semantic graph model easily with SQL. Our SQL extensions are useful independently, simplifying many queries – particularly, queries with joins. We make declared foreign key relationships usable for joins at query time – a feature that seems obvious but is notably missing in standard SQL. In combination, these extensions provide a practical approach to extend SQL incrementally, bringing semantic modeling and graph query together with the relational model and SQL. View details
    FreshBrew: A Benchmark for Evaluating AI Agents on Java Code Migration
    Diganta Misra
    Yanqi Luo
    Anjali Sridhar
    Justine Gehring
    Silvio Soares Ribeiro Junior
    2026
    Preview abstract AI coding assistants are rapidly becoming integral to modern software development. A key challenge in this space is the continual need to migrate and modernize codebases in response to evolving software ecosystems. Traditionally, such migrations have relied on rule-based systems and human intervention. With the advent of powerful large language models (LLMs), AI-driven agentic frameworks offer a promising alternative—but their effectiveness remains underexplored. In this paper, we introduce FreshBrew, a novel benchmark for evaluating AI-based agentic frameworks on project-level Java migrations. We benchmark several such frameworks, powered by state-of-the-art LLMs, and compare their performance against established rule-based tools. Our evaluation of AI agents on this benchmark of 228 repositories shows that the top-performing model, Gemini 2.5 Flash, can successfully migrate 56.5% of projects to JDK 17. Our empirical analysis reveals novel insights into the critical strengths and limitations of current agentic approaches, offering actionable insights into their real-world applicability. By releasing FreshBrew publicly upon acceptance, we aim to facilitate rigorous, reproducible evaluation and catalyze progress in AI-driven codebase modernization. View details
    Who Controls the Curriculum for AI? The Limits of Participatory Design for Educational AI
    Michael Madaio
    Learning Under Algorithmic Conditions, University of Minnesota Press (2026)
    Preview abstract Participatory design is a long-standing effort to shift control over technology design from technologists to users and communities impacted by technologies. For educational AI, this means involving students, families, teachers, and other stakeholders in shaping the design of AI systems. While promising, in this article, I situate the recent calls for participatory design of educational AI systems within a different historical tradition—that of contests over local control of educational curricula. I argue that approaches that attempt to steer the design and development of educational AI through participatory methods may inadvertently reproduce the history of political contestation of educational curricula, in ways that may privilege the most powerful communities, rather than those inequitably impacted. What might it look like to treat participatory AI design as a site for political contestation? How might these approaches avoid reproducing the same majoritarian tendencies that led to educational inequities in the first place? View details
    CrossCheck: Input Validation for WAN Control Systems
    Rishabh Iyer
    Isaac Keslassy
    Sylvia Ratnasamy
    Networked Systems Design and Implementation (NSDI) (2026) (to appear)
    Preview abstract We present CrossCheck, a system that validates inputs to the Software-Defined Networking (SDN) controller in a Wide Area Network (WAN). By detecting incorrect inputs—often stemming from bugs in the SDN control infrastructure—CrossCheck alerts operators before they trigger network outages. Our analysis at a large-scale WAN operator identifies invalid inputs as a leading cause of major outages, and we show how CrossCheck would have prevented those incidents. We deployed CrossCheck as a shadow validation system for four weeks in a production WAN, during which it accurately detected the single incident of invalid inputs that occurred while sustaining a 0% false positive rate under normal operation, hence imposing little additional burden on operators. In addition, we show through simulation that CrossCheck reliably detects a wide range of invalid inputs (e.g., detecting demand perturbations as small as 5% with 100% accuracy) and maintains a near-zero false positive rate for realistic levels of noisy, missing, or buggy telemetry data (e.g., sustaining zero false positives with up to 30% of corrupted telemetry data). View details
    Productionizing Quantum Mass Production
    Bill Huggins
    Nathan Wiebe
    arXiv for now (2026) (to appear)
    Preview abstract For many practical applications of quantum computing, the slowest and most costly steps involve coherently accessing classical data. We help address this challenge by applying mass production techniques, which can sometimes allow us to perform operations many times in parallel for a cost that is comparable to a single execution[1-3]. We combine existing mass-production results with modern approaches for loading classical data using ``quantum read-only memory.'' We show that quantum mass production techniques offer no benefit when we consider a cost model that focuses purely on the number of non-Clifford gates. However, analyzing the constant factors in a more nuanced cost model, we find that it may be possible to obtain a reduction in cost of an order or magnitude or more for a variety reasonably-sized fault-tolerant quantum algorithms. We present several applications of quantum mass-production techniques beyond naive parallelization, including a strategy for reducing the cost of serial calls to the same data loading step. View details
    ALF: Advertiser Large Foundation Model for Multi-Modal Advertiser Understanding
    Sunny Rajagopalan
    Alireza Golestaneh
    Shubhra Chandra
    Min Zhou
    Jonathan Vronsky
    Songbai Yan
    2026
    Preview abstract We present ALF (Advertiser Large Foundation model), a multi-modal transformer architecture for understanding advertiser behavior and intent across text, image, video and structured data modalities. Through contrastive learning and multi-task optimization, ALF creates unified advertiser representations that capture both content and behavioral patterns. Our model achieves state-of-the-art performance on critical tasks including fraud detection, policy violation identification, and advertiser similarity matching. In production deployment, ALF reduces false positives by 90\% while maintaining 99.8\% precision on abuse detection tasks. The architecture's effectiveness stems from its novel combination of multi-modal transformations, intersample attention mechanism, spectrally normalized projections, and calibrated probabilistic outputs. View details
    Preview abstract How many T gates are needed to approximate an arbitrary n-qubit quantum state to within a given precision ϵ? Improving prior work of Low, Kliuchnikov and Schaeffer, we show that the optimal asymptotic scaling is Θ(sqrt{2^n log(1/ε)} + log(1/ε)) if we allow an unlimited number of ancilla qubits. We also show that this is the optimal T-count for implementing an arbitrary diagonal n-qubit unitary to within error ϵ. We describe an application to batched synthesis of single-qubit unitaries: we can approximate a tensor product of m = O(log log(1/ϵ)) arbitrary single-qubit unitaries to within error ϵ with the same asymptotic T-count as is required to approximate just one single-qubit unitary. View details
    Zoom in, Zoom out, Reframe: Domain Experts’ Strategies for Addressing Non-Experts’ Complex Questions
    Beverly Freeman
    Roma Ruparel
    Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems (CHI) (2025)
    Preview abstract Consumers rely on the Internet for expert information in domains such as healthcare and law. Large Language Models (LLMs) have the potential to increase access to expert knowledge. However, past research has not addressed how to handle certain aspects of complex questions that commonly occur in expert-layperson interactions. We conducted in-depth interviews with 26 experts across multiple domains to understand how they experience and respond to challenges associated with non-experts’ questions. Results from a thematic analysis reveal three recurring strategies that experts across domains employ when fielding complex questions. Experts zoom in to clarify details of a broad information request, zoom out to address overly narrow questions or assumptions, and reframe when the underlying need is unstated or poorly represented. We discuss implications for the design of LLM-based experiences that facilitate access to expert information. View details
    Preview abstract Recently, decomposing complex problems into simple subtasks--a crucial part of human-like natural planning--to solve the given problem has significantly boosted the performance of large language models (LLMs). However, leveraging such planning structures during post-training to boost the performance of smaller open-source LLMs remains underexplored. Motivated by this, we introduce Plan-Tuning, a unified post-training framework that (i) distills synthetic task decompositions (termed “planning trajectories”) from large-scale LLMs and (ii) fine-tunes smaller models via supervised and reinforcement-learning objectives designed to mimic these planning processes to improve complex reasoning. On GSM8k and the MATH benchmarks, plan-tuned models outperform strong baselines by an average ~7%. Furthermore, plan-tuned models show better generalization capabilities on out-of-domain datasets, with average ~10% and ~12% performance improvements on OlympiadBench and AIME 2024, respectively. Our detailed analysis demonstrates how planning trajectories improves complex reasoning capabilities, showing that Plan-Tuning is an effective strategy for improving task-specific performance of smaller LLMs. View details
    Preview abstract We introduce a novel subset selection problem called \emph{min-distance diversification with monotone submodular utility} (MDMS), which has a wide variety of applications in machine learning, e.g., data sampling and feature selection. Given a set of points in a metric space, the goal of MDMS is to maximize an objective function combining a monotone submodular utility term and a min-distance diversity term between any pair of selected points, subject to a cardinality constraint. We propose the $\GIST$ algorithm, which achieves a $\sfrac{1}{2}$-approximation guarantee for MDMS by approximating a series of maximum independent set problems with a bicriteria greedy algorithm. We also prove that it is NP-hard to approximate to within a factor of $0.5584$. Finally, we demonstrate that $\GIST$ outperforms existing benchmarks for on a real-world image classification task that studies single-shot subset selection for ImageNet. View details
    Permission Rationales in the Web Ecosystem: An Exploration of Rationale Text and Design Patterns
    Yusra Elbitar
    Soheil Khodayari
    Marian Harbach
    Gianluca De Stefano
    Balazs Engedy
    Giancarlo Pellegrino
    Sven Bugiel
    CHI 2025, ACM
    Preview abstract Modern web applications rely on features like camera and geolocation for personalized experiences, requiring user permission via browser prompts. To explain these requests, applications provide rationales—contextual information on why permissions are needed. Despite their importance, little is known about how rationales appear on the web or their influence on user decisions. This paper presents the first large-scale study of how the web ecosystem handles permission rationales, covering three areas: (i) identifying webpages that use permissions, (ii) detecting and classifying permission rationales, and (iii) analyzing their attributes to understand their impact on user decisions. We examined over 770K webpages from Chrome telemetry, finding 3.6K unique rationale texts and 749 rationale UIs across 85K pages. We extracted key rationale attributes and assessed their effect on user behavior by cross-referencing them with Chrome telemetry data. Our findings reveal nine key insights, providing the first evidence of how different rationales affect user decisions. View details
    Not Like Us, Hunty: Measuring Perceptions and Behavioral Effects of Minoritized Anthropomorphic Cues in LLMs
    Jeffrey Basoah
    Daniel Chechelnitsky
    Tao Long
    Katharina Reinecke
    Chrysoula Zerva
    Kaitlyn Zhou
    Maarten Sap
    Proceedings of the 2025 ACM Conference on Fairness, Accountability, and Transparency, ACM (2025), pp. 710-745
    Preview abstract As large language models (LLMs) increasingly adapt and personalize to diverse sets of users, there is an increased risk of systems appropriating sociolects, i.e., language styles or dialects that are associated with specific minoritized lived experiences (e.g., African American English, Queer slang). In this work, we examine whether sociolect usage by a LLM agent affects user reliance on its outputs and user perception (satisfaction, frustration, trust, and social presence). We designed and conducted user studies where 498 African American English (AAE) speakers and 487 Queer slang speakers performed a set of question-answering tasks with LLM-based suggestions in either standard American English (SAE) or their self-identified sociolect. Our findings showed that sociolect usage by LLMs influenced both reliance and perceptions, though in some surprising ways. Results suggest that both AAE and Queer slang speakers relied more on the SAELM, and had more positive perceptions of the SAELM. Yet, only Queer slang speakers felt more social presence from the QSLM over the SAE one, whereas only AAE speakers preferred and trusted the SAELM over the AAE one. These findings emphasize the need to test for behavioral outcomes rather than simply assume that personalization would lead to a better and safer reliance outcome. They also highlight the nuanced dynamics of minoritized language in machine interactions, underscoring the need for LLMs to be carefully designed to respect cultural and linguistic boundaries while fostering genuine user engagement and trust. View details
    Preview abstract We combine several recent advancements to solve $(1+\varepsilon)$-transshipment and $(1+\varepsilon)$-maximum flow with a parallel algorithm with $\tilde{O}(1/\varepsilon)$ depth and $\tilde{O}(m/\varepsilon)$ work. We achieve this by developing and deploying suitable parallel linear cost approximators in conjunction with an accelerated continuous optimization framework known as the box-simplex game by Jambulapati et al. (ICALP 2022). A linear cost approximator is a linear operator that allows us to efficiently estimate the cost of the optimal solution to a given routing problem. Obtaining accelerated $\varepsilon$ dependencies for both problems requires developing a stronger multicommodity cost approximator, one where cancellations between different commodities are disallowed. For maximum flow, we observe that a recent linear cost approximator due to Agarwal et al. (SODA 2024) can be augmented with additional parallel operations and achieve $\varepsilon^{-1}$ dependency via the box-simplex game. For transshipment, we also obtain construct a deterministic and distributed approximator. This yields a deterministic CONGEST algorithm that requires $\tilde{O}(\varepsilon^{-1}(D + \sqrt{n}))$ rounds on general networks of hop diameter $D$ and $\tilde{O}(\varepsilon^{-1}D)$ rounds on minor-free networks to compute a $(1+\varepsilon)$-approximation. View details
    Preview abstract We study MaxCut on 3-regular graphs of minimum girth $g$ for various $g$'s. We obtain new lower bounds on the maximum cut achievable in such graphs by analyzing the Quantum Approximate Optimization Algorithm (QAOA). For $g\geq14$, at depth $p \geq6$, the QAOA improves on previously known lower bounds. The bounds are established through classical numerical analysis of the QAOA's expected performance. This analysis does not produce the actual cuts but establishes their existence. When implemented on a quantum computer, the QAOA provides an efficient algorithm for finding such cuts, using a constant-depth quantum circuit. To our knowledge, this gives an exponential speedup over the best known classical algorithm guaranteed to achieve cuts of this size on graphs of this girth. We also apply the QAOA to the Maximum Independent Set problem on the same class of graphs. View details
    ×