Publications

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

people standing in front of a screen with images and a chipboard

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
1 - 15 of 10270 publications
    Preview abstract Cloud application development faces the inherent challenge of balancing rapid innovation with high availability. This blog post details how Google Workspace's Site Reliability Engineering team addresses this conflict by implementing vertical partitioning of serving stacks. By isolating application servers and storage into distinct partitions, the "blast radius" of code changes and updates is significantly reduced, minimizing the risk of global outages. This approach, which complements canary deployments, enhances service availability, provides flexibility for experimentation, and facilitates data localization. While challenges such as data model complexities and inter-service partition misalignment exist, the benefits of improved reliability and controlled deployments make partitioning a crucial strategy for maintaining robust cloud applications View details
    Zero-Shot Image Moderation in Google Ads with LLM-Assisted Textual Descriptions and Cross-modal Co-embeddings
    Jimin Li
    Eric Xiao
    Katie Warren
    Enming Luo
    Krishna Viswanathan
    Ariel Fuxman
    Bill Li
    Yintao Liu
    (2025)
    Preview abstract We present a scalable and agile approach for ads image content moderation at Google, addressing the challenges of moderating massive volumes of ads with diverse content and evolving policies. The proposed method utilizes human-curated textual descriptions and cross-modal text-image co-embeddings to enable zero-shot classification of policy violating ads images, bypassing the need for extensive supervised training data and human labeling. By leveraging large language models (LLMs) and user expertise, the system generates and refines a comprehensive set of textual descriptions representing policy guidelines. During inference, co-embedding similarity between incoming images and the textual descriptions serves as a reliable signal for policy violation detection, enabling efficient and adaptable ads content moderation. Evaluation results demonstrate the efficacy of this framework in significantly boosting the detection of policy violating content. View details
    Gemini & Physical World: Large Language Models Can Estimate the Intensity of Earthquake Shaking from Multi-Modal Social Media Posts
    Aman Raj
    Marc Stogaitis
    Youngmin Cho
    Richard Allen
    Patrick Robertson
    Robert Bosch
    Nivetha Thiruverahan
    Alexei Barski
    Tajinder Gadh
    Geophysical Journal International (2025), ggae436
    Preview abstract This paper presents a novel approach for estimating the ground shaking intensity using real-time social media data and CCTV footage. Employing the Gemini 1.5 Pro’s (Reid et al. 2024) model, a multi-modal language model, we demonstrate the ability to extract relevant information from unstructured data utilizing generative AI and natural language processing. The model’s output, in the form of Modified Mercalli Intensity (MMI) values, align well with independent observational data. Furthermore, our results suggest that beyond its advanced visual and auditory understanding abilities, Gemini appears to utilize additional sources of knowledge, including a simplified understanding of the general relationship between earthquake magnitude, distance, and MMI intensity, which it presumably acquired during its training, in its reasoning and decision-making processes. These findings raise intriguing questions about the extent of Gemini's general understanding of the physical world and its phenomena. Gemini’s ability to generate results consistent with established scientific knowledge highlights the potential of LLMs like Gemini in augmenting our understanding of complex physical phenomena such as earthquakes. More specifically, the results of this study highlight the potential of LLMs like Gemini to revolutionize citizen seismology by enabling rapid, effective, and flexible analysis of crowdsourced data from eyewitness accounts for assessing earthquake impact and providing crisis situational awareness. This approach holds a great promise for improving early warning systems, disaster response, and overall resilience in earthquake-prone regions. This study provides a significant step toward harnessing the power of social media and AI for earthquake disaster mitigation. View details
    Triaging mammography with artificial intelligence: an implementation study
    Samantha Winter
    Atilla Kiraly
    Scott Mayer McKinney
    Jie Yang
    Krish Eswaran
    Shravya Shetty
    Timo Kohlberger
    Stacey Caron
    Fereshteh Mahvar
    David Melnick
    Sonya Bhole
    Arnav Agharwal
    David V. Schacht
    Dipti Gupta
    Basil Mustafa
    Alejandra Maciel
    Martha Sevenich
    Sarah M. Friedewald
    Mozziyar Etemadi
    Sunny Jansen
    Shiro Kadowaki
    Gavin Duggan
    Rubin Zhang
    Luca Speroni
    Breast Cancer Research and Treatment (2025)
    Preview abstract Purpose Many breast centers are unable to provide immediate results at the time of screening mammography which results in delayed patient care. Implementing artificial intelligence (AI) could identify patients who may have breast cancer and accelerate the time to diagnostic imaging and biopsy diagnosis. Methods In this prospective randomized, unblinded, controlled implementation study we enrolled 1000 screening participants between March 2021 and May 2022. The experimental group used an AI system to prioritize a subset of cases for same-visit radiologist evaluation, and same-visit diagnostic workup if necessary. The control group followed the standard of care. The primary operational endpoints were time to additional imaging (TA) and time to biopsy diagnosis (TB). Results The final cohort included 463 experimental and 392 control participants. The one-sided Mann-Whitney U test was employed for analysis of TA and TB. In the control group, the TA was 25.6 days [95% CI 22.0–29.9] and TB was 55.9 days [95% CI 45.5–69.6]. In comparison, the experimental group's mean TA was reduced by 25% (6.4 fewer days [one-sided 95% CI > 0.3], p<0.001) and mean TB was reduced by 30% (16.8 fewer days; 95% CI > 5.1], p=0.003). The time reduction was more pronounced for AI-prioritized participants in the experimental group. All participants eventually diagnosed with breast cancer were prioritized by the AI. Conclusions Implementing AI prioritization can accelerate care timelines for patients requiring additional workup, while maintaining the efficiency of delayed interpretation for most participants. Reducing diagnostic delays could contribute to improved patient adherence, decreased anxiety and addressing disparities in access to timely care. View details
    Scaling Laws for Downstream Task Performance in Machine Translation
    Hussein Hazimeh
    Natalia Ponomareva
    Sanmi Koyejo
    International Conference on Learning Representations (ICLR) (2025) (to appear)
    Preview abstract Scaling laws provide important insights that can guide the design of large language models (LLMs). Existing work has primarily focused on studying scaling laws for pretraining (upstream) loss. However, in transfer learning settings, in which LLMs are pretrained on an unsupervised dataset and then finetuned on a downstream task, we often also care about the downstream performance. In this work, we study the scaling behavior in a transfer learning setting, where LLMs are finetuned for machine translation tasks. Specifically, we investigate how the choice of the \emph{pretraining} data and its size affect downstream performance (translation quality) as judged by: downstream cross-entropy and translation quality metrics such as BLEU and COMET scores. Our experiments indicate that the size of the finetuning dataset and the distribution alignment between the pretraining and downstream data significantly influence the scaling behavior. With sufficient alignment, both downstream cross-entropy and translation quality scores improve monotonically with more pretraining data. In such cases, we show that it is possible to predict the downstream translation quality metrics with good accuracy using a log-law. However, there are cases where moderate misalignment causes the downstream translation scores to fluctuate or get worse with more pretraining, whereas downstream cross-entropy monotonically improves. By analyzing these, we provide new practical insights for choosing appropriate pretraining data. View details
    Databases in the Era of Memory-Centric Computing
    Lawrence Benson
    Lisa Wu Wills
    Jana Gičeva
    Eric Seldar
    Anastasia Ailamaki
    Helena Caminal
    2025
    Preview abstract The increasing disparity between processor core counts and memory bandwidth, coupled with the rising cost and underutilization of memory, introduces a performance and cost Memory Wall and presents a significant challenge to the scalability of database systems. We argue that current processor-centric designs are unsustainable, and we advocate for a shift towards memory-centric computing, where disaggregated memory pools enable cost-effective scaling and robust performance. Database systems are uniquely positioned to leverage memory-centric systems because of their intrinsic data-centric nature. We demonstrate how memory-centric database operations can be realized with current hardware, paving the way for more efficient and scalable data management in the cloud. View details
    Preview abstract We consider the Coalition Structure Learning (CSL) problem in multi-agent systems, motivated by the existence of coalitions in many real-world systems, e.g., trading platforms and auction systems. In this problem, there is a hidden coalition structure within a set of $n$ agents, which affects the behavior of the agents in games. Our goal is to actively design a sequence of games for the agents to play, such that observations in these games can be used to learn the hidden coalition structure. In particular, we consider the setting where in each round, we design and present a game together with a strategy profile to the agents, and receive a multiple-bit observation -- for each agent, we observe whether or not they would like to deviate from the specified strategy in this given game. Our contributions are three-fold: First, we show that we can learn the coalition structure in $O(\log n)$ rounds if we are allowed to choose any normal-form game in each round, matching the information-theoretical lower bound, and the result can be extended to congestion games. Second, in a more restricted setting where we can only choose a graphical game with degree limit $d$, we develop an algorithm to learn the coalition structure in $O(n/d+\log d)$ rounds. Third, when we can only learn the coalition structure through running second-price auctions with personalized reserve prices, we show that the coalition structure can be learned in $O(c\log n)$ rounds, where $c$ is the size of the largest coalition. View details
    Linear Elastic Caching via Ski Rental
    Todd Lipcon
    The biennial Conference on Innovative Data Systems Research (2025)
    Preview abstract In this work we study the Linear Elastic Caching problem, where the goal is to minimize the total cost of a cache inclusive of not just its misses, but also its memory footprint integrated over time. We demonstrate a theoretical connection to the classic ski rental problem and propose a practical algorithm that combines online caching algorithms with ski rental policies. We also introduce a lightweight machine learning-based algorithm for ski rental that is optimized for production workloads and is easy to integrate within existing database systems. Evaluations on both production workloads in Google Spanner and publicly available traces show that the proposed elastic caching approach can significantly reduce the total cache cost compared to traditional fixed-size cache policies. View details
    Context is Key for Agent Security
    Eugene Bagdasaryan
    Lillian Tsai
    arXiv (2025)
    Preview abstract Judging the safety of an action, whether taken by a human or a system, must take into account the context in which the action takes place. For example, deleting an email from a user's mailbox may or may not be appropriate depending on the email's content, the user's goals, or even available space. Systems today that make these judgements---providing security against harmful or inappropriate actions---rely on manually-crafted policies or user confirmation for each relevant context. With the upcoming deployment of systems like generalist agents, we argue that we must rethink security designs to adapt to the scale of contexts and capabilities of these systems. As a first step, this paper explores contextual security in the domain of agents and proposes contextual security for agents (Conseca), a framework to generate just-in-time, contextual, and human-verifiable security policies. View details
    A Reduction from Multi-Parameter to Single-Parameter Bayesian Contract Design
    Junjie Chen
    Haifeng Xu
    Matteo Castiglioni
    Minming Li
    SODA 2025 (to appear)
    Preview abstract The problem of contract design addresses the challenge of moral hazard in principle-agent setups. The agent exerts costly efforts that produce a random outcome with an associated reward for the principal. Moral hazard refers to the tension that the principal cannot observe the agent’s effort level hence needs to incentivize the agent only through rewarding the realized effort outcome, i.e., the contract. Bayesian contract design studies the principal’s design problem of an optimal contract when facing an unknown agent characterized by a private Bayesian type. In its most general form, the agent’s type is inherently “multi-parameter” and can arbitrarily affect both the agent’s productivity and effort costs. In contrast, a natural single-parameter setting of much recent interest simplifies the agent’s type to a single value that describes the agent’s cost per unit of effort, whereas agents’ efforts are assumed to be equally productive. The main result of this paper is an almost approximation-preserving polynomial-time reduction from the most general multi-parameter Bayesian contract design (BCD) to single-parameter BCD. That is, for any multi-parameter BCD instance I^M, we construct a single-parameter instance I^S such that any β-approximate contract (resp. menu of contracts) of I^S can in turn be converted to a (β − ϵ)-approximate contract (resp. menu of contracts) of I^M. The reduction is in time polynomial in the input size and log(1/ϵ); moreover, when β = 1 (i.e., the given single-parameter solution is exactly optimal), the dependence on 1/ϵ can be removed, leading to a polynomial-time exact reduction. This efficient reduction is somewhat surprising because in the closely related problem of Bayesian mechanism design, a polynomial-time reduction from multi-parameter to single-parameter setting is believed to not exist. Our result demonstrates the intrinsic difficulty of addressing moral hazard in Bayesian contract design, regardless of being single-parameter or multi-parameter. As byproducts, our reduction answers two open questions in recent literature of algorithmic contract design: (a) it implies that optimal contract design in single-parameter BCD is not in APX unless P=NP even when the agent’s type distribution is regular, answering the open question of [3] in the negative; (b) it implies that the principal’s (order-wise) tight utility gap between using a menu of contracts and a single contract is Θ(n) where n is the number of actions, answering the major open question of [27] for the single-parameter case. View details
    Preview abstract In today's rapidly evolving business landscape, Governance, Risk, and Compliance (GRC) leaders in large, complex organizations face unprecedented challenges. The cloud has revolutionized how businesses operate, offering unprecedented scalability, flexibility, cost-efficiency, additional security and resilience. However, this transformation also presents new challenges for GRC professionals. In a cloud-native world, where applications are built and deployed in dynamic, distributed environments, traditional GRC on-prem approaches, manual processes and spreadsheets struggle to keep pace. The key to success lies in embracing a data-driven GRC strategy that leverages the power of the cloud to enhance agility, visibility, and resilience. View details
    Differentiable Approximations for Distance Queries
    David M. Mount
    Proceedings of the 2025 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)
    Preview abstract The widespread use of gradient-based optimization has motivated the adaptation of various classical algorithms into differentiable solvers compatible with learning pipelines. In this paper, we investigate the enhancement of traditional geometric query problems such that the result consists of both the geometric function as well as its gradient. Specifically, we study the fundamental problem of distance queries against a set of points P in R^d, which also underlies various similarity measures for learning algorithms. The main result of this paper is a multiplicative (1+epsilon)-approximation of the Euclidean distance to P which is differentiable at all points in R^d \ P with asymptotically optimal bounds on the norms of its gradient and Hessian, from a data structure with storage and query time matching state-of-the-art results for approximate nearest-neighbor searching. The approximation is realized as a regularized distance through a partition-of-unity framework, which efficiently blends multiple local approximations, over a suitably defined covering of space, into a smooth global approximation. In order to obtain the local distance approximations in a manner that facilitates blending, we develop a new approximate Voronoi diagram based on a simple point-location data structure, simplifying away both the lifting transformation and ray shooting. View details
    Improving simulation-based origin-destination demand calibration using sample segment counts data
    Yechen Li
    Arwa Alanqary
    The 12th Triennial Symposium on Transportation Analysis conference (TRISTAN XII), Okinawa, Japan (2025) (to appear)
    Preview abstract This paper introduces a novel approach to demand estimation that utilizes partial observations of segment-level track counts. Building on established simulation-based demand estimation methods, we present a modified formulation that integrates sample track counts as a regularization term. This approach effectively addresses the underdetermination challenge in demand estimation, moving beyond the conventional reliance on a prior OD matrix. The proposed formulation aims to preserve the distribution of the observed track counts while optimizing the demand to align with observed path-level travel times. We tested this approach on Seattle's highway network with various congestion levels. Our findings reveal significant enhancements in the solution quality, particularly in accurately recovering ground truth demand patterns at both the OD and segment levels. View details
    SSDTrain: Faster Large Language Model Training Using SSD-Based Activation Offloading
    Mert Hidayetoğlu
    Steven Lumetta
    Kun Wu
    Sitao Huang
    Jeongmin Brian Park
    Wen-mei Hwu
    Vikram Sharma Mailthody
    Design Automation Conference (DAC) (2025)
    Preview abstract The scaling up of Large Language Models (LLMs) demands more memory than current GPUs can provide, hindering the training process. To address this challenge, we propose SSDTrain to efficiently offload activations, the intermediate tensors produced during LLM training, to SSDs. This approach reduces GPU memory usage without impacting performance by adaptively overlapping data transfers with computation. SSDTrain is compatible with popular deep learning frameworks like PyTorch, Megatron, and DeepSpeed, and it employs techniques such as tensor deduplication, forwarding, and adaptive offloading to further enhance efficiency. We conduct extensive experiments on Llama, BERT, and T5. Results demonstrate that SSDTrain effectively reduces 45% of the activation peak memory usage. It can perfectly overlap the IO with the computation without introducing performance penalty. SSDTrain can achieve a performance boost of up to 31% compared to the conventional training strategy using the same GPU systems. View details