Publications

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

people standing in front of a screen with images and a chipboard

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
1 - 15 of 11082 publications
    Who Controls the Curriculum for AI? The Limits of Participatory Design for Educational AI
    Michael Madaio
    Learning Under Algorithmic Conditions, University of Minnesota Press (2026)
    Preview abstract Participatory design is a long-standing effort to shift control over technology design from technologists to users and communities impacted by technologies. For educational AI, this means involving students, families, teachers, and other stakeholders in shaping the design of AI systems. While promising, in this article, I situate the recent calls for participatory design of educational AI systems within a different historical tradition—that of contests over local control of educational curricula. I argue that approaches that attempt to steer the design and development of educational AI through participatory methods may inadvertently reproduce the history of political contestation of educational curricula, in ways that may privilege the most powerful communities, rather than those inequitably impacted. What might it look like to treat participatory AI design as a site for political contestation? How might these approaches avoid reproducing the same majoritarian tendencies that led to educational inequities in the first place? View details
    CrossCheck: Input Validation for WAN Control Systems
    Rishabh Iyer
    Isaac Keslassy
    Sylvia Ratnasamy
    Networked Systems Design and Implementation (NSDI) (2026) (to appear)
    Preview abstract We present CrossCheck, a system that validates inputs to the Software-Defined Networking (SDN) controller in a Wide Area Network (WAN). By detecting incorrect inputs—often stemming from bugs in the SDN control infrastructure—CrossCheck alerts operators before they trigger network outages. Our analysis at a large-scale WAN operator identifies invalid inputs as a leading cause of major outages, and we show how CrossCheck would have prevented those incidents. We deployed CrossCheck as a shadow validation system for four weeks in a production WAN, during which it accurately detected the single incident of invalid inputs that occurred while sustaining a 0% false positive rate under normal operation, hence imposing little additional burden on operators. In addition, we show through simulation that CrossCheck reliably detects a wide range of invalid inputs (e.g., detecting demand perturbations as small as 5% with 100% accuracy) and maintains a near-zero false positive rate for realistic levels of noisy, missing, or buggy telemetry data (e.g., sustaining zero false positives with up to 30% of corrupted telemetry data). View details
    A Computer Vision Problem in Flatland
    Erin Connelly
    Annalisa Crannell
    Timothy Duff
    Rekha R. Thomas
    SIAM Journal on Applied Algebra and Geometry, 10 (2026), pp. 14-45
    Preview abstract When is it possible to project two sets of labeled points of equal cardinality lying in a pair of projective planes to the same image on a projective line? We give a complete answer to this question, obtaining the following results. We first show that such a pair of projections exist if and only if the two point sets are themselves images of a common point set in projective space. Moreover, we find that for generic pairs of point sets, a common projection exists if and only if their cardinality is at most seven. In these cases, we give an explicit description of the loci of projection centers that enable a common image. View details
    FreshBrew: A Benchmark for Evaluating AI Agents on Java Code Migration
    Diganta Misra
    Yanqi Luo
    Anjali Sridhar
    Justine Gehring
    Silvio Soares Ribeiro Junior
    2026
    Preview abstract AI coding assistants are rapidly becoming integral to modern software development. A key challenge in this space is the continual need to migrate and modernize codebases in response to evolving software ecosystems. Traditionally, such migrations have relied on rule-based systems and human intervention. With the advent of powerful large language models (LLMs), AI-driven agentic frameworks offer a promising alternative—but their effectiveness remains underexplored. In this paper, we introduce FreshBrew, a novel benchmark for evaluating AI-based agentic frameworks on project-level Java migrations. We benchmark several such frameworks, powered by state-of-the-art LLMs, and compare their performance against established rule-based tools. Our evaluation of AI agents on this benchmark of 228 repositories shows that the top-performing model, Gemini 2.5 Flash, can successfully migrate 56.5% of projects to JDK 17. Our empirical analysis reveals novel insights into the critical strengths and limitations of current agentic approaches, offering actionable insights into their real-world applicability. By releasing FreshBrew publicly upon acceptance, we aim to facilitate rigorous, reproducible evaluation and catalyze progress in AI-driven codebase modernization. View details
    ALF: Advertiser Large Foundation Model for Multi-Modal Advertiser Understanding
    Sunny Rajagopalan
    Alireza Golestaneh
    Shubhra Chandra
    Min Zhou
    Jonathan Vronsky
    Songbai Yan
    2026
    Preview abstract We present ALF (Advertiser Large Foundation model), a multi-modal transformer architecture for understanding advertiser behavior and intent across text, image, video and structured data modalities. Through contrastive learning and multi-task optimization, ALF creates unified advertiser representations that capture both content and behavioral patterns. Our model achieves state-of-the-art performance on critical tasks including fraud detection, policy violation identification, and advertiser similarity matching. In production deployment, ALF reduces false positives by 90\% while maintaining 99.8\% precision on abuse detection tasks. The architecture's effectiveness stems from its novel combination of multi-modal transformations, intersample attention mechanism, spectrally normalized projections, and calibrated probabilistic outputs. View details
    Productionizing Quantum Mass Production
    Bill Huggins
    Nathan Wiebe
    arXiv for now (2026) (to appear)
    Preview abstract For many practical applications of quantum computing, the slowest and most costly steps involve coherently accessing classical data. We help address this challenge by applying mass production techniques, which can sometimes allow us to perform operations many times in parallel for a cost that is comparable to a single execution[1-3]. We combine existing mass-production results with modern approaches for loading classical data using ``quantum read-only memory.'' We show that quantum mass production techniques offer no benefit when we consider a cost model that focuses purely on the number of non-Clifford gates. However, analyzing the constant factors in a more nuanced cost model, we find that it may be possible to obtain a reduction in cost of an order or magnitude or more for a variety reasonably-sized fault-tolerant quantum algorithms. We present several applications of quantum mass-production techniques beyond naive parallelization, including a strategy for reducing the cost of serial calls to the same data loading step. View details
    Preview abstract How many T gates are needed to approximate an arbitrary n-qubit quantum state to within a given precision ϵ? Improving prior work of Low, Kliuchnikov and Schaeffer, we show that the optimal asymptotic scaling is Θ(sqrt{2^n log(1/ε)} + log(1/ε)) if we allow an unlimited number of ancilla qubits. We also show that this is the optimal T-count for implementing an arbitrary diagonal n-qubit unitary to within error ϵ. We describe an application to batched synthesis of single-qubit unitaries: we can approximate a tensor product of m = O(log log(1/ϵ)) arbitrary single-qubit unitaries to within error ϵ with the same asymptotic T-count as is required to approximate just one single-qubit unitary. View details
    Preview abstract Semantic data models express high-level business concepts and metrics, capturing the business logic needed to query a database correctly. Most data modeling solutions are built as layers above SQL query engines, with bespoke query languages or APIs. The layered approach means that semantic models can’t be used directly in SQL queries. This paper focuses on an open problem in this space – can we define semantic models in SQL, and make them naturally queryable in SQL? In parallel, graph query is becoming increasingly popular, including in SQL. SQL/PGQ extends SQL with an embedded subset of the GQL graph query language, adding property graph views and making graph traversal queries easy. We explore a surprising connection: semantic data models are graphs, and defining graphs is a data modeling problem. In both domains, users start by defining a graph model, and need query language support to easily traverse edges in the graph, which means doing joins in the underlying data. We propose some useful SQL extensions that make it easier to use higher-level data model abstractions in queries. Users can define a “semantic data graph” view of their data, encapsulating the complex business logic required to query the underlying tables correctly. Then they can query that semantic graph model easily with SQL. Our SQL extensions are useful independently, simplifying many queries – particularly, queries with joins. We make declared foreign key relationships usable for joins at query time – a feature that seems obvious but is notably missing in standard SQL. In combination, these extensions provide a practical approach to extend SQL incrementally, bringing semantic modeling and graph query together with the relational model and SQL. View details
    Linear Elastic Caching via Ski Rental
    Todd Lipcon
    The biennial Conference on Innovative Data Systems Research (2025)
    Preview abstract In this work we study the Linear Elastic Caching problem, where the goal is to minimize the total cost of a cache inclusive of not just its misses, but also its memory footprint integrated over time. We demonstrate a theoretical connection to the classic ski rental problem and propose a practical algorithm that combines online caching algorithms with ski rental policies. We also introduce a lightweight machine learning-based algorithm for ski rental that is optimized for production workloads and is easy to integrate within existing database systems. Evaluations on both production workloads in Google Spanner and publicly available traces show that the proposed elastic caching approach can significantly reduce the total cache cost compared to traditional fixed-size cache policies. View details
    Almost Optimal Fully Dynamic k-Center Clustering with Recourse
    Sayan Bhattacharya
    Martin Costa
    Ermiya Farokhnejad
    2025 International Conference on Machine Learning (2025)
    Preview abstract In this paper, we consider the \emph{metric $k$-center} problem in the fully dynamic setting, where we are given a metric space $(V,d)$ evolving via a sequence of point insertions and deletions and our task is to maintain a subset $S \subseteq V$ of at most $k$ points that minimizes the objective $\max_{x \in V} \min_{y \in S}d(x, y)$. We want to design our algorithm so that we minimize its \emph{approximation ratio}, \emph{recourse} (the number of changes it makes to the solution $S$) and \emph{update time} (the time it takes to handle an update). We give a simple algorithm for dynamic $k$-center that maintains a $O(1)$-approximate solution with $O(1)$ amortized recourse and $\tilde O(k)$ amortized update time, \emph{obtaining near-optimal approximation, recourse and update time simultaneously}. We obtain our result by combining a variant of the dynamic $k$-center algorithm of Bateni et al.~[SODA'23] with the dynamic sparsifier of Bhattacharya et al.~[NeurIPS'23]. View details
    Probing non-equilibrium topological order on a quantum processor
    Melissa Will
    Tyler Cochran
    Bernhard Jobst
    Norhan Eassa
    Michael Knap
    Adam Gammon-Smith
    Frank Pollmann
    Nature, 645 (2025), 348–353
    Preview abstract Out-of-equilibrium phases in many-body systems constitute a new paradigm in quantum matter—they exhibit dynamical properties that may otherwise be forbidden by equilibrium thermodynamics. Among these non-equilibrium phases are periodically driven (Floquet) systems, which are generically difficult to simulate classically because of their high entanglement. Here we realize a Floquet topologically ordered state on an array of superconducting qubits. We image the characteristic dynamics of its chiral edge modes and characterize its emergent anyonic excitations. Devising an interferometric algorithm allows us to introduce and measure a bulk topological invariant to probe the dynamical transmutation of anyons for system sizes up to 58 qubits. Our work demonstrates that quantum processors can provide key insights into the thus-far largely unexplored landscape of highly entangled non-equilibrium phases of matter. View details
    Preview abstract Modern foundation models are trained on diverse datasets to enhance generalization across tasks and domains. A central challenge in this process is determining how to effectively mix and sample data from multiple sources. This naturally leads to a multi-task learning (MTL) perspective. While prior work in MTL has emphasized mitigating gradient conflicts, we observe that large-scale pre-training scenarios-such as multilingual or multi-domain training-often exhibit little to no gradient conflict. Motivated by this observation, we propose PiKE (Positive gradient interaction-based K task weights Estimator), an adaptive data mixing algorithm that dynamically adjusts sampling weights during training. PiKE exploits non-conflicting gradient interactions to minimize a near-tight upper bound on the average loss decrease at each step, while incurring negligible computational overhead. We provide theoretical convergence guarantees and show that PiKE outperforms static and nonadaptive mixing baselines. Furthermore, we extend PiKE to promote balanced learning across tasks. Extensive experiments on large-scale language model pre-training confirm that PiKE achieves faster convergence and improved downstream performance compared to existing approaches. View details
    Preview abstract Large language models are typically pretrained on a corpus of natural language text. In recent years, the desire to create language models which can interpret and generate code in different programming languages has led to the inclusion of non-linguistic code in the pretraining corpora for language models. Aside from aiding programming-related tasks, anecdotal evidence suggests that including code in pretraining corpora may improve performance on other, unrelated tasks: To study this, we pretrain suites of language models on parameterized `code mixture' datasets which interleave natural language and code in two different settings: competitive, in which the total volume of data seen during pretraining is held constant; and additive, in which the volume of language data is held constant. We study how the pretraining mixture affects (a) general reasoning on BigBench tasks, and (b) compositionality, measured by generalization accuracy on finetuned compositional benchmarks. We find that increased code mixtures cause higher performance on compositional and reasoning tasks involving structured formal outputs (like semantic parsing and arithmetic) and, conversely that code harms performance on purely-linguistic or world knowledge tasks. View details
    Synthetic Text Generation for Training Large Language Models (LLMs) via Gradient Matching
    Dang Nguyen
    Zeman Li
    Meisam Razaviyayn
    Baharan Mirzasoleiman
    International Conference on Machine Learning (ICML) (2025)
    Preview abstract Synthetic data has the potential to improve the performance, training efficiency, and privacy of real training examples. Nevertheless, existing approaches for synthetic text generation are mostly heuristics and cannot generate human-readable text without compromising the privacy of real data, or provide performance guarantees for training Large Language Models (LLMs). In this work, we propose the first theoretically rigorous approach for generating synthetic human-readable text that provides convergence, performance, and privacy guarantees for fine-tuning LLMs on a target task. To do so, we leverage Alternating Direction Method of Multipliers (ADMM) that iteratively optimizes the embeddings of synthetic examples to match the noisy gradient of the target training or validation data, and maps them to a sequence of text tokens with low perplexity. In doing so, the generated synthetic text guarantees convergence of the model to a close neighborhood of the solution obtained by fine-tuning on real data and preserves their privacy. Experiments on various classification tasks confirm the effectiveness of our proposed approach. Our code is available at https://github.com/BigML-CS-UCLA/GRADMM. View details
    Practical Inverse Rendering of Textured and Translucent Appearance
    Philippe Weier
    Jérémy Riviere
    Ruslan Guseinov
    Stephan Garbin
    Philipp Slusallek
    Bernd Bickel
    Thabo Beeler
    Delio Vicini
    ACM Transactions on Graphics (TOG), 44 (2025), pp. 1-16
    Preview abstract Inverse rendering has emerged as a standard tool to reconstruct the parameters of appearance models from images (e.g., textured BSDFs). In this work, we present several novel contributions motivated by the practical challenges of recovering high-resolution surface appearance textures, including spatially-varying subsurface scattering parameters. First, we propose Laplacian mipmapping, which combines differentiable mipmapping and a Laplacian pyramid representation into an effective preconditioner. This seemingly simple technique significantly improves the quality of recovered surface textures on a set of challenging inverse rendering problems. Our method automatically adapts to the render and texture resolutions, only incurs moderate computational cost and achieves better quality than prior work while using fewer hyperparameters. Second, we introduce a specialized gradient computation algorithm for textured, path-traced subsurface scattering, which facilitates faithful reconstruction of translucent materials. By using path tracing, we enable the recovery of complex appearance while avoiding the approximations of the previously used diffusion dipole methods. Third, we demonstrate the application of both these techniques to reconstructing the textured appearance of human faces from sparse captures. Our method recovers high-quality relightable appearance parameters that are compatible with current production renderers. View details
    ×