Xingyou Song

Xingyou Song

I am currently a Senior Research Scientist at Google Brain. My personal website can be found here.
Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Sub-Linear Memory: How to Make Performers SLiM
    Valerii Likhosherstov
    Jared Davis
    Adrian Weller
    NeurIPS 2021
    Preview abstract The Transformer architecture has revolutionized deep learning on sequential data, becoming ubiquitous in state-of-the-art solutions for a wide variety of applications. Yet vanilla Transformers are notoriously resource-expensive, requiring O(L^2) in serial time and memory as functions of input length L. Recent works proposed various linear self-attention mechanisms, scaling only as O(L) for serial computation. We perform a thorough analysis of recent Transformer mechanisms with linear self-attention, Performers, in terms of overall computational complexity. We observe a remarkable computational flexibility: forward and backward propagation can be performed with no approximations using sub-linear memory as a function of L (in addition to negligible storage for the input sequence), at a cost of greater time complexity in the parallel setting. In the extreme case, a Performer consumes only O(1) memory during training, and still requires O(L) time. This discovered time-memory tradeoff can be used for training or, due to complete backward-compatibility, for fine-tuning on a low-memory device, e.g. a smartphone or an earlier-generation GPU, thus contributing towards decentralized and democratized deep learning. View details
    Debiasing a First-order Heuristic for Approximate Bi-level Optimization
    Valerii Likhosherstov
    Jared Davis
    Adrian Weller
    Thirty-eighth International Conference on Machine Learning (ICML 2021)
    Preview abstract Approximate bi-level optimization (ABLO) consists of (outer-level) optimization problems, involving numerical (inner-level) optimization loops. While ABLO has many applications across deep learning, it suffers from time and memory complexity proportional to the length r of its inner optimization loop. To address this complexity, an earlier first-order method (FOM) was proposed as a heuristic that omits second derivative terms, yielding significant speed gains and requiring only constant memory. Despite FOM's popularity, there is a lack of theoretical understanding of its convergence properties. We contribute by theoretically characterizing FOM's gradient bias under mild assumptions. We further demonstrate a rich family of examples where FOM-based SGD does not converge to a stationary point of the ABLO objective. We address this concern by proposing an unbiased FOM (UFOM) enjoying constant memory complexity as a function of r. We characterize the introduced time-variance tradeoff, demonstrate convergence bounds, and find an optimal UFOM for a given ABLO problem. Finally, we propose an efficient adaptive UFOM scheme. View details
    Rethinking Attention with Performers
    Valerii Likhosherstov
    David Martin Dohan
    Peter Hawkins
    Jared Quincy Davis
    Afroz Mohiuddin
    Lukasz Kaiser
    Adrian Weller
    accepted to ICLR 2021 (oral presentation) (to appear)
    Preview abstract We introduce Performers, Transformer architectures which can estimate regular (softmax) full-rank-attention Transformers with provable accuracy, but using only linear (as opposed to quadratic) space and time complexity, without relying on any priors such as sparsity or low-rankness. To approximate softmax attention-kernels, Performers use a novel Fast Attention Via positive Orthogonal Random features approach (FAVOR+), which may be of independent interest for scalable kernel methods. FAVOR+ can be also used to efficiently model kernelizable attention mechanisms beyond softmax. This representational power is crucial to accurately compare softmax with other kernels for the first time on large-scale tasks, beyond the reach of regular Transformers, and investigate optimal attention-kernels. Performers are linear architectures fully compatible with regular Transformers and with strong theoretical guarantees: unbiased or nearly-unbiased estimation of the attention matrix, uniform convergence and low estimation variance. We tested Performers on a rich set of tasks stretching from pixel-prediction through text models to protein sequence modeling. We demonstrate competitive results with other examined efficient sparse and dense attention methods, showcasing effectiveness of the novel attention-learning paradigm leveraged by Performers. View details
    Rapidly Adaptable Legged Robots via Evolutionary Meta-Learning
    Yuxiang Yang
    Wenbo Gao
    Chelsea Finn
    International Conference on Intelligent Robots and Systems (IROS) (2020) (to appear)
    Preview abstract Learning adaptable policies is crucial for robots to operate autonomously in our complex and quickly changing world. In this work, we present a new meta-learning method that allows robots to quickly adapt to changes in dynamics. In contrast to gradient-based meta-learning algorithms that rely on second-order gradient estimation, we introduce a more noise-tolerant Batch Hill-Climbing adaptation operator and combine it with meta-learning based on evolutionary strategies. Our method significantly improves adaptation to changes in dynamics in high noise settings, which are common in robotics applications. We validate our approach on a quadruped robot that learns to walk while subject to changes in dynamics. We observe that our method significantly outperforms prior gradient-based approaches, enabling the robot to adapt its policy to changes based on less than 3 minutes of real data. View details
    Preview abstract Zeroth-order optimization is the process of minimizing an objective $f(x)$ given oracle access to evaluations at adaptively chosen inputs $x$. In this paper, we present two simple yet powerful GradientLess Descent (GLD) algorithms that do not rely on an underlying gradient estimate and are numerically stable. We analyze our algorithm from a novel geometric perspective and we derive two invariance properties of our algorithm: monotone and affine invariance. Specifically, for {\it any monotone transform} of a smooth and strongly convex objective with latent dimension $k$, then we present a novel analysis that shows convergence within an $\epsilon$-ball of the optimum in $O(kQ\log(n)\log(R/\epsilon))$ evaluations, where the input dimension is $n$, $R$ is the diameter of the input space and $Q$ is the condition number. Our rates are the first of its kind to be both 1) poly-logarithmically dependent on dimensionality and 2) invariant under monotone transformations. From our geometric perspective, we can further show that our analysis is optimal. We emphasize that monotone and affine invariance are key to the empirical success of gradientless algorithms, as demonstrated on BBOB and MuJoCo benchmarks. View details
    Observational Overfitting in Reinforcement Learning
    Behnam Neyshabur
    Stephen Tu
    Yiding Jiang
    Yilun Du
    ICLR (2020)
    Preview abstract A major component of overfitting in model-free reinforcement learning (RL) involves the case where the agent may mistakenly correlate reward with certain spurious features from the observations generated by the Markov Decision Process (MDP). We provide a general framework for analyzing this scenario, which we use to design multiple synthetic benchmarks from only modifying the observation space of an MDP. When an agent overfits to different observation spaces even if the underlying MDP dynamics is fixed, we term this observational overfitting. Our experiments expose intriguing properties especially with regards to implicit regularization, and also corroborate results from previous works in RL generalization and supervised learning (SL). View details
    An Ode to an ODE
    Jared Quincy Davis
    Valerii Likhosherstov
    Jean-Jacques Slotine
    Jake Varley
    Honglak Lee
    Adrian Weller
    NeurIPS 2020 (2020)
    Preview abstract We present a new paradigm for Neural ODE algorithms, called ODEtoODE, where time-dependent parameters of the main flow evolve according to a matrix flow on the orthogonal group O(d). This nested system of two flows, where the parameter-flow is constrained to lie on the compact manifold, provides stability and effectiveness of training and provably solves the gradient vanishing-explosion problem which is intrinsically related to training deep neural network architectures such as Neural ODEs. Consequently, it leads to better downstream models, as we show on the example of training reinforcement learning policies with evolution strategies, and in the supervised learning setting, by comparing with previous SOTA baselines. We provide strong convergence results for our proposed mechanism that are independent of the depth of the network, supporting our empirical studies. Our results show an intriguing connection between the theory of deep neural networks and the field of matrix flows on compact manifolds. View details
    Preview abstract We propose a model-free algorithm for learning efficient policies capable of returning table tennis balls by controlling robot joints at a rate of 100Hz. We demonstrate that evolutionary search (ES) methods acting on CNN-based policy architectures for non-visual inputs and convolving across time learn compact controllers leading to smooth motions. Furthermore, we show that with appropriately tuned curriculum learning on the task and rewards, policies are capable of developing multi-modal styles, specifically forehand and backhand stroke, whilst achieving 80\% return rate on a wide range of ball throws. We observe that multi-modality does not require any architectural priors, such as multi-head architectures or hierarchical policies. View details
    ES-MAML: Simple Hessian-Free Meta Learning
    Wenbo Gao
    Yuxiang Yang
    Aldo Pacchiano
    Yunhao Tang
    Eighth International Conference on Learning Representations (ICLR 2020) (2019)
    Preview abstract We introduce ES-MAML, a new framework for solving the model agnostic meta learning (MAML) problem based on Evolution Strategies (ES). Existing algorithms for MAML are based on policy gradients, and incur significant difficulties when attempting to estimate second derivatives using backpropagation on stochastic policies. We show how ES can be applied to MAML to obtain an algorithm which avoids the problem of estimating second derivatives, and is also conceptually simple and easy to implement. Moreover, ES-MAML can handle new types of nonsmooth adaptation operators, and other techniques for improving performance and estimation of ES methods become applicable. We show empirically that ES-MAML is competitive with existing methods and often yields better adaptation with fewer queries. View details