Jump to Content

Tianqi Liu

Authored Publications
Google Publications
Other Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Preview abstract Multi-Task Learning (MTL) models have shown their robustness, effectiveness, and efficiency for transferring learned knowledge across tasks. In real industrial applications such as web content classification, multiple classification tasks are predicted from the same input text such as a web article. However, at the serving time, the existing multitask transformer models such as prompt or adaptor based approaches need to conduct N forward passes for N tasks with O(N) computation cost. To tackle this problem, we propose a scalable method that can achieve stronger performance with close to O(1) computation cost via only one forward pass. To illustrate real application usage, we release a multitask dataset on news topic and style classification. Our experiments show that our proposed method outperforms strong baselines on both the GLUE benchmark and our news dataset. View details
    Preview abstract Pre-trained text encoders such as BERT and its variants have recently achieved state-of-the-art performances on many NLP tasks. While being effective, these pre-training methods typically demand massive computation resources. To accelerate pre-training, ELECTRA trains a discriminator that predicts whether each input token is replaced by a generator. However, this new task, as a binary classification, is less semantically informative. In this study, we present a new text encoder pre-training method that improves ELECTRA based on multi-task learning. Specifically, we train the discriminator to simultaneously detect replaced tokens and select original tokens from candidate sets. We further develop two techniques to effectively combine all pre-training tasks: (1) using attention-based networks for task-specific heads, and (2) sharing bottom layers of the generator and the discriminator. Extensive experiments on GLUE and SQuAD datasets demonstrate both the effectiveness and the efficiency of our proposed method. View details
    Preview abstract Effectively modeling text-rich fresh content such as news articles and blog posts is a challenging problem. To ensure a content-based model generalize well to a broad range of applications, it is critical to have a training dataset that is large beyond the scale of human labels while achieving desired quality. In this work, we addressing those two challenges by proposing a novel approach to mine semantically-relevant fresh documents, and their topic labels, with little human supervision. Specifically, we design a multitask model that alternate trains a contrasting learning with a multi-label classification to derive an universal document encoder. We show that this approach can provide billions of high quality organic training examples and can be naturally extended to multilingual setting where texts in different languages are encoded in the same semantic space. We experimentally demonstrate NewsEmbed’s competitive performance across multiple natural language understanding tasks, both supervised and unsupervised. View details
    Preview abstract Accurate predictions of customers' future lifetime value (LTV) given their attributes and past purchase behavior enables a more customer-centric marketing strategy. Marketers can segment customers into various buckets based on the predicted LTV and, in turn, customize marketing messages or advertising copies to serve customers in different segments better. Furthermore, LTV predictions can directly inform marketing budget allocations and improve real-time targeting and bidding of ad impressions. One challenge of LTV modeling is that some customers never come back, and the distribution of LTV can be heavy-tailed. The commonly used mean squared error (MSE) loss does not accommodate the significant fraction of zero value LTV from one-time purchasers and can be sensitive to extremely large LTV's from top spenders. In this article, we model the distribution of LTV given associated features as a mixture of zero point mass and lognormal distribution, which we refer to as the zero-inflated lognormal (ZILN) distribution. This modeling approach allows us to capture the churn probability and account for the heavy-tailedness nature of LTV at the same time. It also yields straightforward uncertainty quantification of the point prediction. The ZILN loss can be used in both linear models and deep neural networks (DNN). For model evaluation, we recommend the normalized Gini coefficient to quantify model discrimination and decile charts to assess model calibration. Empirically, we demonstrate the predictive performance of our proposed model on two real-world public datasets. View details
    No Results Found