Jump to Content
Tao Chen

Tao Chen

Tao Chen is a software engineer at Google Research working on Natural Language Processing and Information Retrieval. Prior to that, she obtained her Ph.D in Computer Science at the National University of Singapore, and did a postdoc at the Center for Language and Speech Processing, Johns Hopkins University. See her personal homepage or her Google Scholar page for more information.
Authored Publications
Google Publications
Other Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Creator Context for Tweet Recommendation
    Matt Colen
    Sergey Levi
    Vladimir Ofitserov
    Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track
    Preview abstract When discussing a tweet, people usually not only refer to the content it delivers, but also to the person behind the tweet. In other words, grounding the interpretation of the tweet in the context of its creator plays an important role in deciphering the true intent and the importance of the tweet. In this paper, we attempt to answer the question of how creator context should be used to advance tweet understanding. Specifically, we investigate the usefulness of different types of creator context, and examine different model structures for incorporating creator context in tweet modeling. We evaluate our tweet understanding models on a practical use case -- recommending relevant tweets to news articles. This use case already exists in popular news apps, and can also serve as a useful assistive tool for journalists. We discover that creator context is essential for tweet understanding, and can improve application metrics by a large margin. However, we also observe that not all creator contexts are equal. Creator context can be time sensitive and noisy. Careful creator context selection and deliberate model structure design play an important role in creator context effectiveness. View details
    End-to-End Query Term Weighting
    Karan Samel
    Swaraj Khadanga
    Wensong Xu
    Xingyu Wang
    Kashyap Kolipaka
    Proceedings of the 29th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '23) (2023)
    Preview abstract Bag-of-words based lexical retrieval systems are still the most commonly used methods for real-world search applications. Recently deep learning methods have shown promising results to improve this retrieval performance but are expensive to run in an online fashion, non-trivial to integrate into existing production systems, and might not generalize well in out-of-domain retrieval scenarios. Instead, we build on top of lexical retrievers by proposing a Term Weighting BERT (TW-BERT) model. TW-BERT learns to predict the weight for individual n-gram (e.g., uni-grams and bi-grams) query input terms. These inferred weights and terms can be used directly by a retrieval system to perform a query search. To optimize these term weights, TW-BERT incorporates the scoring function used by the search engine, such as BM25, to score query-document pairs. Given sample query-document pairs we can compute a ranking loss over these matching scores, optimizing the learned query term weights in an end-to-end fashion. Aligning TW-BERT with search engine scorers minimizes the changes needed to integrate it into existing production applications, whereas existing deep learning based search methods would require further infrastructure optimization and hardware requirements. The learned weights can be easily utilized by standard lexical retrievers and by other retrieval techniques such as query expansion. We show that TW-BERT improves retrieval performance over strong term weighting baselines within MSMARCO and in out-of-domain retrieval on TREC datasets. View details
    Preview abstract The pre-trained language model (eg, BERT) based deep retrieval models achieved superior performance over lexical retrieval models (eg, BM25) in many passage retrieval tasks. However, limited work has been done to generalize a deep retrieval model to other tasks and domains. In this work, we carefully select five datasets, including two in-domain datasets and three out-of-domain datasets with different levels of domain shift, and study the generalization of a deep model in a zero-shot setting. Our findings show that the performance of a deep retrieval model is significantly deteriorated when the target domain is very different from the source domain that the model was trained on. On the contrary, lexical models are more robust across domains. We thus propose a simple yet effective framework to integrate lexical and deep retrieval models. Our experiments demonstrate that these two models are complementary, even when the deep model is weaker in the out-of-domain setting. The combined model obtains an average of 20.4% relative gain over the deep retrieval model, and an average of 9.54% over the lexical model in three out-of-domain datasets. View details
    Preview abstract State-of-the-art neural models typically encode document-query pairs using cross-attention for re-ranking. To this end, models generally utilize an encoder-only (like BERT) paradigm or an encoder-decoder (like T5) approach. These paradigms, however, are not without flaws, i.e., running the model on all query-document pairs at inference-time incurs a significant computational cost. This paper proposes a new training and inference paradigm for re-ranking. We propose to finetune a pretrained encoder-decoder model using in the form of document to query generation. Subsequently, we show that this encoder-decoder architecture can be decomposed into a decoder-only language model during inference. This results in significant inference time speedups since the decoder-only architecture only needs to learn to interpret static encoder embeddings during inference. Our experiments show that this new paradigm achieves results that are comparable to the more expensive cross-attention ranking approaches while being up to 6.8X faster. We believe this work paves the way for more efficient neural rankers that leverage large pretrained models. View details
    Preview abstract The content on the web is in a constant state of flux. New entities, issues, and ideas continuously emerge, while the semantics of the existing conversation topics gradually shift. In recent years, pretrained language models like BERT greatly improved the state-of-the-art for a large spectrum of content understanding tasks. Therefore, in this paper, we aim to study how these language models can be adapted to better handle continuously evolving web content. In our study, we first analyze the evolution of 2013 – 2019 Twitter data, and unequivocally confirm that a BERT model trained on past tweets would heavily deteriorate when directly applied to data from later years. Then, we investigate two possible sources of the deterioration: the semantic shift of existing tokens and the sub-optimal or failed understanding of new tokens. To this end, we both explore two different vocabulary composition methods, as well as propose three sampling methods which help in efficient incremental training for BERT-like models. Compared to a new model trained from scratch offline, our incremental training (a) reduces the training costs, (b) achieves better performance on evolving content, and (c) is suitable for online deployment. The superiority of our methods is validated using two downstream tasks. We demonstrate significant improvements when incrementally evolving the model from a particular base year, on the task of Country Hashtag Prediction, as well as on the OffensEval 2019 task. View details
    Preview abstract Document layout comprises both structural and visual (\eg font size) information that are vital but often ignored by machine learning models. The few existing models which do use layout information only consider \textit{textual} contents, and overlook the existence of contents in other modalities such as images. Additionally, spatial interactions of presented contents in a layout was never fully exploited. On the other hand, a series of document understanding tasks are calling out for layout information. One example is given a position in a document, which image is the best to fit in. To address current models' limitations and tackle layout-aware document understanding tasks, we first parse a document into blocks whose content can be textual, tabular, or multimedia (\eg images) using a proprietary tool. We then propose a novel hierarchical framework, LAMPreT, to encode the blocks. Our LAMPreT model encodes each block with a multimodal transformer in the lower-level, and aggregates the block-level representations and connections utilizing a specifically designed transformer at the higher-level. We design hierarchical pre-training objectives where the lower-level model is trained with the standard masked language modeling (MLM) loss and the multimodal alignment loss, and the higher-level model is trained with three layout-aware objectives: (1) block-order predictions, (2) masked block predictions, and (3) image fitting predictions. We test the proposed model on two layout-aware tasks -- image suggestions and text block filling, and show the effectiveness of our proposed hierarchical architecture as well as pre-training techniques. View details
    Context-Based Quotation Recommendation
    Ansel Mitchell MacLaughlin
    Dan Roth
    The 15th International AAAI Conference on Web and Social Media (ICWSM'21) (2021)
    Preview abstract While composing a new document, anything from a news article to an email or essay, authors often utilize direct quotes from a variety of sources. Although an author may know what point they would like to make, selecting an appropriate quote for the specific context may be time-consuming and difficult. We therefore propose a novel context-aware quote recommendation system which utilizes the content an author has already written to generate a ranked list of quotable paragraphs and spans of tokens from a given source document. We approach quote recommendation as a variant of open-domain question answering and adapt the state-of-the-art BERT-based methods from open-QA to our task. We conduct experiments on a collection of speech transcripts and associated news articles, evaluating models' paragraph ranking and span prediction performances. Our experiments confirm the strong performance of BERT-based methods on this task, which outperform bag-of-words and neural ranking baselines by more than 30% relative across all ranking metrics. Qualitative analyses show the difficulty of the paragraph and span recommendation tasks and confirm the quotability of the best BERT model's predictions, even if they are not the true selected quotes from the original news articles. View details
    No Results Found