Jump to Content
Srini Narayanan

Srini Narayanan

Authored Publications
Google Publications
Other Publications
Sort By
  • Title
  • Title, desc
  • Year
  • Year, desc
    Preview abstract We propose a benchmark to assess the capability of large language models to reason with metaphor. Our benchmark combines the previously isolated topics of metaphor detection and commonsense reasoning into a single task that requires a model to make inferences by accurately selecting between the literal and metaphorical register. We examine the performance of state-of-the-art pretrained models on forced-choice tasks and find a large discrepancy between small and very large models, going from chance- to human-level performance. However, upon examining the generative performance of the largest model, we find that there is still a gap to bridge before human performance is reached in a more natural conversational setting. View details
    Preview abstract We propose a lightweight real-time sign language detection model, as we identify the need for such a case in videoconferencing. We extract optical flow features based on human pose estimation and, using a linear classifier, show these features are meaningful with an accuracy of 80%, evaluated on the DGS Corpus. Using a recurrent model directly on the input, we see improvements of up to 91% accuracy, while still working under 4ms. We describe a demo application to sign language detection in the browser in order to demonstrate its usage possibility in videoconferencing applications. View details
    Points, Paths, and Playscapes: Large-scale Spatial Language Understanding Tasks Set in the Real World
    Daphne Luong
    Proceedings of the First International Workshop on Spatial Language Understanding, Association for Computational Linguistics, New Orleans, Louisiana, USA (2018), pp. 46-52
    Preview abstract Spatial language understanding is important for practical applications and as a building block for better abstract language understanding. Much progress has been made through work on understanding spatial relations and values in images and texts as well as on giving and following navigation instructions in restricted domains. We argue that the next big advances in spatial language understanding can be best supported by creating large-scale datasets that focus on points and paths based in the real world, and then extending these to create online, persistent playscapes that mix human and bot players. The bot players can begin play having undergone a prior training regime, but then must learn, evolve, and survive according to their depth of understanding of scenes, navigation, and interactions. View details
    Multilingual Metaphor Processing: Experiments with Semi-Supervised and Unsupervised Learning
    Ekaterina Shutova
    Lin Sun
    Dario Gutierrez
    Patricia Lichtenstein
    Computational Linguistics (2017)
    Preview abstract Highly frequent in language and communication, metaphor represents a significant challenge for Natural Language Processing (NLP) applications. Computational work on metaphor has traditionally evolved around the use of hand-coded knowledge, making the systems hard to scale. Recent years have witnessed a rise in statistical approaches to metaphor processing. However, these approaches often require extensive human annotation effort and are predominantly evaluated within a limited domain. In contrast, we experiment with weakly supervised and unsupervised techniques — with little or no annotation — to generalize higher-level mechanisms of metaphor from distributional properties of concepts. We investigate different levels and types of supervision (learning from linguistic examples vs. learning from a given set of metaphorical mappings vs. learning without annotation) in flat and hierarchical, unconstrained and constrained clustering settings. Our aim is to identify the optimal type of supervision for a learning algorithm that discovers patterns of metaphorical association from text. In order to investigate the scalability and adaptability of our models, we applied them to data in three languages from different language groups — English, Spanish and Russian, — achieving state-of-the-art results with little supervision. Finally, we demonstrate that statistical methods can facilitate and scale up cross-linguistic research on metaphor. View details
    Bridging Text and Knowledge with Frames
    ACL Workshop on Frame Semantics (in honor of Charles FIllmore) (2014)
    Preview abstract FrameNet is the current best operational version of Chuck Fillmore’s Frame Semantics. As FrameNet has evolved over the years, we have been building a series of increasingly ambitious prototype applications that exploit the ideas of frame semantics and FrameNet as a resource. Results from this work suggest that frames are a natural semantic representation linking issue of textual meaning and world knowledge. View details
    No Results Found