Shaan Bijwadia
Researcher on the Google Speech team.
Research Areas
Authored Publications
Sort By
Text Injection for Capitalization and Turn-taking Prediction In ASR Models
Weiran Wang
Interspeech 2023 (2023)
Preview abstract
Text injection for automatic speech recognition (ASR), wherein unpaired text-only data is used to supplement paired audio-text data, has shown promising improvements for word error rate. This study examines the use of text injection for auxiliary tasks, which are the non-ASR tasks often performed by an E2E model. In this work, we use joint end-to-end and internal language model training (JEIT) as our text injection algorithm to train an ASR model which performs two auxiliary tasks. The first is capitalization, which is a de-normalization task. The second is turn-taking prediction, which attempts to identify whether a user has completed their conversation turn in a digital assistant interaction. We show results demonstrating that our text injection method boosts capitalization performance for long-tail data, and improves turn-taking detection recall.
View details
Unified End-to-End Speech Recognition and Endpointing for Fast and Efficient Speech Systems
Chao Zhang
IEEE Spoken Language Technology Workshop (2022)
Preview abstract
Automatic speech recognition (ASR) systems typically rely on an external endpointer (EP) model to identify speech boundaries. This EP model strongly affects latency, but is subject to computational constraints, which limits prediction accuracy. We propose a method to jointly train the ASR and EP tasks in a single end-to-end (E2E) multitask model, improving EP quality by optionally leveraging information from the ASR audio encoder. We introduce a "switch" connection, which trains the EP to consume either the audio frames directly or low-level latent representations from the ASR model. This allows flexibility during inference to produce a low-cost prediction or a higher quality prediction if ASR computation is ongoing. We present results on a voice search test set showing that, compared to separate single-task models, this approach reduces median endpoint latency by 130ms (33.3% reduction), and 90th percentile latency by 160ms (22.2% reduction), without regressing word-error rate. For continuous recognition, WER improves by 10.6% (relative).
View details