Satyen Kale

Satyen Kale

My current research is the design of efficient and practical algorithms for fundamental problems in Machine Learning and Optimization. More specifically, I am interested in decision making under uncertainty, statistical learning theory, combinatorial optimization, and convex optimization techniques such as linear and semidefinite programming. More information, including a complete list of publications, can be found at satyenkale.com.
Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Preview abstract Large deep learning models have achieved state-of-the-art performance across various natural language processing (NLP) tasks and demonstrated remarkable few-shot learning performance. However, training them is often challenging and resource-intensive. In this paper, we study an efficient approach to train language models using few-shot learners. We show that, by leveraging the fast learning nature of few-shot learners, one can train language models efficiently in a stagewise manner. Our main insight is that stacking a good few-shot learner on a good small language model provides a good initializer for a larger language model. Using this insight and building upon progressive stacking approaches, we develop novel approaches for training such networks in a stagewise manner. Furthermore, we also provide a theoretical framework and accompanying empirical studies to support our insights, thereby creating a theoretical foundation for progressive stacking. Finally, we provide empirical results to demonstrate the effectiveness of our approach in reducing the training time of few-shot learners. View details
    On the Convergence of Federated Averaging with Cyclic Client Participation
    Yae Jee Cho
    Pranay Sharma
    Gauri Joshi
    Tong Zhang
    International Conference on Machine Learning (ICML)(2023) (to appear)
    Preview abstract Federated Averaging (FedAvg) and its variants are the most popular optimization algorithms in federated learning (FL). Previous convergence analyses of FedAvg either assume full client participation or partial client participation where the clients can be uniformly sampled. However, in practical cross-device FL systems, only a subset of clients that satisfy local criteria such as battery status, network connectivity, and maximum participation frequency requirements (to ensure privacy) are available for training at a given time. As a result, client availability follows a natural cyclic pattern. We provide (to our knowledge) the first theoretical framework to analyze the convergence of FedAvg with cyclic client participation with several different client optimizers such as GD, SGD, and shuffled SGD. Our analysis discovers that cyclic client participation can achieve a faster asymptotic convergence rate than vanilla FedAvg with uniform client participation under suitable conditions, providing valuable insights into the design of client sampling protocols. View details
    Preview abstract Federated learning (FL) enables learning from decentralized privacy-sensitive data, with computations on raw data confined to take place at edge clients. This paper introduces mixed FL, which incorporates an additional loss term calculated at the coordinating server (while maintaining FL's private data restrictions). There are numerous benefits. For example, additional datacenter data can be leveraged to jointly learn from centralized (datacenter) and decentralized (federated) training data and better match an expected inference data distribution. Mixed FL also enables offloading some intensive computations (e.g., embedding regularization) to the server, greatly reducing communication and client computation load. For these and other mixed FL use cases, we present three algorithms: PARALLEL TRAINING, 1-WAY GRADIENT TRANSFER, and 2-WAY GRADIENT TRANSFER. We state convergence bounds for each, and give intuition on which are suited to particular mixed FL problems. Finally we perform extensive experiments on three tasks, demonstrating that mixed FL can blend training data to achieve an oracle's accuracy on an inference distribution, and can reduce communication and computation overhead by over 90%. Our experiments confirm theoretical predictions of how algorithms perform under different mixed FL problem settings. View details
    A Field Guide to Federated Optimization
    Jianyu Wang
    Gauri Joshi
    Maruan Al-Shedivat
    Galen Andrew
    A. Salman Avestimehr
    Katharine Daly
    Deepesh Data
    Suhas Diggavi
    Hubert Eichner
    Advait Gadhikar
    Antonious M. Girgis
    Filip Hanzely
    Chaoyang He
    Samuel Horvath
    Martin Jaggi
    Tara Javidi
    Sai Praneeth Karimireddy
    Jakub Konečný
    Sanmi Koyejo
    Tian Li
    Peter Richtarik
    Karan Singhal
    Virginia Smith
    Mahdi Soltanolkotabi
    Weikang Song
    Sebastian Stich
    Ameet Talwalkar
    Hongyi Wang
    Blake Woodworth
    Honglin Yuan
    Mi Zhang
    Tong Zhang
    Chunxiang (Jake) Zheng
    Chen Zhu
    arxiv(2021)
    Preview abstract Federated learning and analytics are a distributed approach for collaboratively learning models (or statistics) from decentralized data, motivated by and designed for privacy protection. The distributed learning process can be formulated as solving federated optimization problems, which emphasize communication efficiency, data heterogeneity, compatibility with privacy and system requirements, and other constraints that are not primary considerations in other problem settings. This paper provides recommendations and guidelines on formulating, designing, evaluating and analyzing federated optimization algorithms through concrete examples and practical implementation, with a focus on conducting effective simulations to infer real-world performance. The goal of this work is not to survey the current literature, but to inspire researchers and practitioners to design federated learning algorithms that can be used in various practical applications. View details
    Preview abstract Multiclass logistic regression is a fundamental task in machine learning with applications in classification and boosting. Previous work (Foster et a. 2018) has highlighted the importance of improper predictors for achieving ``fast rates'' in the online multiclass logistic regression problem without suffering exponentially from secondary problem parameters, such as the norm of the predictors in the comparison class. While Foster et al. introduced a statistically optimal algorithm, it is in practice computationally intractable due to its run-time complexity being a large polynomial in the time horizon and dimension of input feature vectors. It has remained an open problem if algorithms exist that are both statistically and computationally efficient. Jezequel et al. answered this question for binary logistic regression by introducing AIOLI, an algorithm based on online newton step. However, their technique fails to generalize to more than two classes and it remains open whether their algorithm can be applied to practical applications of logistic regression, such as bandit multiclass learning or online boosting. In this paper, we develop a new algorithm, FOLKLORE, for the problem which runs significantly faster than the algorithm of Foster et al. -- the running time per iteration scales quadratically in the dimension -- at the cost of a linear dependence on the norm of the predictors in the regret bound. This yields the first practical algorithm for online multiclass logistic regression, resolving an open problem of Jezequel et al. We resolve the open questions by deriving an extension of AIOLI to the multi-class setting. Furthermore, we show that our algorithm can be applied to online bandit multiclass prediction and online multiclass boosting, yielding more practical algorithms for both problems compared to the ones in Foster et al. with similar performance guarantees. Finally, we also provide an online-to-batch conversion result for our algorithm. View details
    Preview abstract We present a series of new PAC-Bayes learning guarantees for randomized algorithms with sample-dependent priors. Our most general bounds make no assumption on the priors and are given in terms of certain covering numbers under the infinite-Renyi divergence and the L1 distance. We show how to use these general bounds to derive leaning bounds in the setting where the sample-dependent priors obey an infinite-Renyi divergence or L1-distance sensitivity condition. We also provide a flexible framework for computing PAC-Bayes bounds, under certain stability assumptions on the sample-dependent priors, and show how to use this framework to give more refined bounds when the priors satisfy an infinite-Renyi divergence sensitivity condition. View details
    Preview abstract Federated learning (FL) is a challenging setting for optimization due to the heterogeneity of the data across different clients which gives rise to the client drift phenomenon. In this work, we propose a general algorithmic framework, \mime, which i) mitigates client drift and ii) adapts arbitrary centralized optimization algorithms such as SGD and Adam to the federated learning setting. Mime uses a combination of control-variates and server-level statistics (e.g. momentum) at every client-update step to ensure that each local update mimics that of the centralized method run on iid data. We prove a reduction result showing that \mime can translate the convergence of a generic algorithm in the centralized setting into convergence in the federated setting. Further, we show for the first time that multiple local steps can lead to faster convergence in the cross-device FL setting. Our thorough theoretical and empirical analyses establish Mime's superiority over other other baselines. View details
    Preview abstract We consider the problem of retrieving the most relevant labels for a given input when the size of the output space is very large. Retrieval methods are modeled as set-valued classifiers which output a small set of classes for each input, and a mistake is made if the label is not in the output set. Despite its practical importance, a statistically principled, yet practical solution to this problem is largely missing. To this end, we first define a family of surrogate losses and show that they are calibrated and convex under certain conditions on the loss parameters and data distribution, thereby establishing a statistical and analytical basis for using these losses. Furthermore, we identify a particularly intuitive class of loss functions in the aforementioned family and show that they are amenable to practical implementation in the large output space setting (i.e. computation is possible without evaluating scores of all labels) by developing a technique called Stochastic Negative Mining. We also provide generalization error bounds for the losses in the family. Finally, we conduct experiments which demonstrate that Stochastic Negative Mining yields benefits over commonly used negative sampling approaches. View details
    Preview abstract In extreme classification settings, embedding-based neural network models are currently not competitive with sparse linear and tree-based methods in terms of accuracy. Most prior works attribute this poor performance to the low-dimensional bottleneck in embedding-based methods. In this paper, we demonstrate that theoretically there is no limitation to using low-dimensional embedding-based methods, and provide experimental evidence that overfitting is the root cause of the poor performance of embedding-based methods. These findings motivate us to investigate novel data augmentation and regularization techniques to mitigate overfitting. To this end, we propose GLaS, a new regularizer for embedding-based neural network approaches. It is a natural generalization from the graph Laplacian and spread-out regularizers, and empirically it addresses the drawback of each regularizer alone when applied to the extreme classification setup. With the proposed techniques, we attain or improve upon the state-of-the-art on most widely tested public extreme classification datasets with hundreds of thousands of labels. View details
    Preview abstract Adaptive gradient methods that rely on scaling gradients down by the square root of exponential moving averages of past squared gradients, such RMSPROP, ADAM, ADADELTA have found wide application in optimizing the non-convex problems that arise in deep learning. However, it has been recently demonstrated that such methods can fail to converge even in simple convex optimization settings. In this work, we provide a new analysis of such methods applied to nonconvex stochastic optimization problems, characterizing the effect of increasing minibatch size. Our analysis shows that under this scenario such methods do converge to stationarity up to the statistical limit of variance in the stochastic gradients (scaled by a constant factor). In particular, our result implies that increasing minibatch sizes enables convergence, thus providing a way to circumvent the non-convergence issues. Furthermore, we provide a new adaptive optimization algorithm, YOGI, which controls the increase in effective learning rate, leading to even better performance with similar theoretical guarantees on convergence. Extensive experiments show that YOGI with very little hyperparameter tuning outperforms methods such as ADAM in several challenging machine learning tasks View details