Jump to Content
Pete Florence

Pete Florence

Pete Florence is a Research Scientist working in the areas of machine learning, computer vision, 3D learning, self-supervised learning, and policy learning in robotics.
Authored Publications
Google Publications
Other Publications
Sort By
  • Title
  • Title, desc
  • Year
  • Year, desc
    Towards Generalist Biomedical AI
    Danny Driess
    Andrew Carroll
    Chuck Lau
    Ryutaro Tanno
    Ira Ktena
    Anil Palepu
    Basil Mustafa
    Simon Kornblith
    Philip Mansfield
    Sushant Prakash
    Renee Wong
    Sunny Virmani
    Sara Mahdavi
    Bradley Green
    Ewa Dominowska
    Joelle Barral
    NEJM AI (2024)
    Preview abstract BACKGROUND: Medicine is inherently multimodal, requiring the simultaneous interpretation and integration of insights between many data modalities spanning text, imaging, genomics, and more. Generalist biomedical artificial intelligence systems that flexibly encode, integrate, and interpret these data might better enable impactful applications ranging from scientific discovery to care delivery. METHODS: To catalyze development of these models, we curated MultiMedBench, a new multimodal biomedical benchmark. MultiMedBench encompasses 14 diverse tasks, such as medical question answering, mammography and dermatology image interpretation, radiology report generation and summarization, and genomic variant calling. We then introduced Med-PaLM Multimodal (Med-PaLM M), our proof of concept for a generalist biomedical AI system that flexibly encodes and interprets biomedical data including clinical language, imaging, and genomics with the same set of model weights. To further probe the capabilities and limitations of Med-PaLM M, we conducted a radiologist evaluation of model-generated (and human) chest x-ray reports. RESULTS: We observed encouraging performance across model scales. Med-PaLM M reached performance competitive with or exceeding the state of the art on all MultiMedBench tasks, often surpassing specialist models by a wide margin. In a side-by-side ranking on 246 retrospective chest x-rays, clinicians expressed a pairwise preference for Med-PaLM Multimodal reports over those produced by radiologists in up to 40.50% of cases, suggesting potential clinical utility. CONCLUSIONS: Although considerable work is needed to validate these models in real-world cases and understand if cross-modality generalization is possible, our results represent a milestone toward the development of generalist biomedical artificial intelligence systems. (Funded by Alphabet Inc. and/or a subsidiary thereof.) View details
    Preview abstract We present a differentiable formulation of rigid-body contact dynamics for objects and robots represented as compositions of convex primitives. Existing optimization-based approaches simulating contact between convex primitives rely on a bilevel formulation that separates collision detection and contact simulation. These approaches are unreliable in realistic contact simulation scenarios because isolating the collision detection problem introduces contact location non-uniqueness. Our approach combines contact simulation and collision detection into a unified single-level optimization problem. This disambiguates the collision detection problem in a physics-informed manner. Compared to previous differentiable simulation approaches, our formulation features improved simulation robustness and computational complexity improved by more than an order of magnitude. We provide a numerically efficient implementation of our formulation in the Julia language called \href{https://github.com/simon-lc/DojoLight.jl}{DojoLight.jl}. View details
    Preview abstract We present a framework for bi-level trajectory optimization in which a system's dynamics are encoded as the solution to a constrained optimization problem and smooth gradients of this lower-level problem are passed to an upper-level trajectory optimizer. This optimization-based dynamics representation enables constraint handling, additional variables, and non-smooth behavior to be abstracted away from the upper-level optimizer, and allows classical unconstrained optimizers to synthesize trajectories for more complex systems. We provide a path-following method for efficient evaluation of constrained dynamics and utilize the implicit-function theorem to compute smooth gradients of this representation. We demonstrate the framework by modeling systems from locomotion, aerospace, and manipulation domains including: acrobot with joint limits, cart-pole subject to Coulomb friction, Raibert hopper, rocket landing with thrust limits, and planar-push task with optimization-based dynamics and then optimize trajectories using iterative LQR. View details
    VIRDO: Visio-tactile Implicit Representations of Deformable Objects
    Youngsun Wi
    Nima Fazeli
    IEEE International Conference on Robotics and Automation (ICRA) (2022)
    Preview abstract Deformable object manipulation requires computationally efficient representations that are compatible with robotic sensing modalities. In this paper, we present VIRDO:an implicit, multi-modal, and continuous representation for deformable-elastic objects. VIRDO operates directly on visual (point cloud) and tactile (reaction forces) modalities and learns rich latent embeddings of contact locations and forces to predict object deformations subject to external contacts.Here, we demonstrate VIRDOs ability to: i) produce high-fidelity cross-modal reconstructions with dense unsupervised correspondences, ii) generalize to unseen contact formations,and iii) state-estimation with partial visio-tactile feedback. View details
    InnerMonologue: Embodied Reasoning through Planning with Language Models
    Wenlong Huang
    Harris Chan
    Jacky Liang
    Igor Mordatch
    Yevgen Chebotar
    Noah Brown
    Tomas Jackson
    Linda Luu
    Brian Andrew Ichter
    Conference on Robot Learning (2022) (to appear)
    Preview abstract Recent works have shown the capabilities of large language models to perform tasks requiring reasoning and to be applied to applications beyond natural language processing, such as planning and interaction for embodied robots.These embodied problems require an agent to understand the repertoire of skills available to a robot and the order in which they should be applied. They also require an agent to understand and ground itself within the environment. In this work we investigate to what extent LLMs can reason over sources of feedback provided through natural language. We propose an inner monologue as a way for an LLM to think through this process and plan. We investigate a variety of sources of feedback, such as success detectors and object detectors, as well as human interaction. The proposed method is validated in a simulation domain and on real robotic. We show that Innerlogue can successfully replan around failures, and generate new plans to accommodate human intent. View details
    Implicit Kinematic Policies: Unifying Joint and Cartesian Action Spaces in End-to-End Robot Learning
    Adi Ganapathi
    Jake Varley
    Kaylee Burns
    Ken Goldberg
    IEEE International Conference on Robotics and Automation (ICRA) (2022)
    Preview abstract Action representation is an important yet often overlooked aspect in end-to-end robot learning with deep networks. Choosing one action space over another (e.g. target joint positions, or Cartesian end-effector poses) can result in surprisingly stark performance differences between various downstream tasks -- and as a result, considerable research has been devoted to finding the right action space for a given application. However, in this work, we instead investigate how our models can discover and learn for themselves which action space to use. Leveraging recent work on implicit behavioral cloning, which takes both observations and actions as input, we demonstrate that it is possible to present the same action in multiple different spaces to the same policy -- allowing it to learn inductive patterns from each space. Specifically, we study the benefits of combining Cartesian and joint action spaces in the context of learning manipulation skills. To this end, we present Implicit Kinematic Policies (IKP), which incorporates the kinematic chain as a differentiable module within the deep network. Quantitative experiments across several simulated continuous control tasks---from scooping piles of small objects, to lifting boxes with elbows, to precise block insertion with miscalibrated robots---suggest IKP not only learns complex prehensile and non-prehensile manipulation from pixels better than baseline alternatives, but also can learn to compensate for small joint encoder offset errors. Finally, we also run qualitative experiments on a real UR5e to demonstrate the feasibility of our algorithm on a physical robotic system with real data. View details
    Preview abstract Large pretrained (e.g., "foundation") models exhibit distinct capabilities depending on the domain of data they are trained on. While these domains are generic, they may only barely overlap. For example, visual-language models (VLMs) are trained on Internet-scale image captions, but large language models (LMs) are further trained on Internet-scale text with no images (e.g., spreadsheets, SAT questions, code). As a result, these models store different forms of commonsense knowledge across different domains. In this work, we show that this diversity is symbiotic, and can be leveraged through Socratic Models (SMs): a modular framework in which multiple pretrained models may be composed zero-shot i.e., via multimodal-informed prompting, to exchange information with each other and capture new multimodal capabilities, without requiring finetuning. With minimal engineering, SMs are not only competitive with state-of-the-art zero-shot image captioning and video-to-text retrieval, but also enable new applications such as (i) answering free-form questions about egocentric video, (ii) engaging in multimodal assistive dialogue with people (e.g., for cooking recipes) by interfacing with external APIs and databases (e.g., web search), and (iii) robot perception and planning. Prototypes are available at socraticmodels.github.io View details
    iNeRF: Inverting Neural Radiance Fields for Pose Estimation
    Yen-Chen Lin
    Phillip Isola
    Alberto Rodriguez
    Tsung-Yi Lin
    IROS 2021 (to appear)
    Preview abstract We present iNeRF, a framework that performs mesh-free pose estimation by “inverting” a Neural Radiance Field (NeRF). NeRFs have been shown to be remarkably effective for the task of view synthesis — synthesizing photorealistic novel views of real-world scenes or objects. In this work, we investigate whether we can apply analysis-by-synthesis via NeRF for mesh-free, RGB-only 6DoF pose estimation – given an image, find the translation and rotation of a camera relative to a 3D object or scene. Our method assumes that no object mesh models are available during either training or test time. Starting from an initial pose estimate, we use gradient descent to minimize the residual between pixels rendered from a NeRF and pixels in an observed image. In our experiments, we first study 1) how to sample rays during pose refinement for iNeRF to collect informative gradients and 2) how different batch sizes of rays affect iNeRF on a synthetic dataset. We then show that for complex real-world scenes from the LLFF dataset, iNeRF can improve NeRF by estimating the camera poses of novel images and using these images as additional training data for NeRF. Finally, we show iNeRF can perform category-level object pose estimation, including object instances not seen during training, with RGB images by inverting a NeRF model inferred from a single view. View details
    Preview abstract We find that across a wide range of robot policy learning scenarios, treating supervised policy learning with an implicit model generally performs better, on average, than commonly used explicit models. We present extensive experiments on this finding, and we provide both intuitive insight and theoretical arguments distinguishing the properties of implicit models compared to their explicit counterparts, particularly with respect to approximating complex, potentially discontinuous and multi-valued (set-valued) functions. On robotic policy learning tasks we show that implicit behavioral cloning policies with energy-based models (EBM) often outperform common explicit (Mean Square Error, or Mixture Density) behavioral cloning policies, including on tasks with high-dimensional action spaces and visual image inputs. We find these policies provide competitive results or outperform state-of-the-art offline reinforcement learning methods on the challenging human-expert tasks from the D4RL benchmark suite, despite using no reward information. In the real world, robots with implicit policies can learn complex and remarkably subtle behaviors on contact-rich tasks from human demonstrations, including tasks with high combinatorial complexity and tasks requiring 1mm precision. View details
    Preview abstract We investigate the visual cross-embodiment imitation setting, in which agents learn policies from videos of other agents (such as humans) demonstrating the same task, but with stark differences in their embodiments -- shape, actions, end-effector dynamics, etc. In this work, we demonstrate that it is possible to automatically discover and learn vision-based reward functions from cross-embodiment demonstration videos that are robust to these differences. Specifically, we present a self-supervised method for Cross-embodiment Inverse Reinforcement Learning (XIRL) that leverages temporal cycle-consistency constraints to learn deep visual embeddings that capture task progression from offline videos of demonstrations across multiple expert agents, each performing the same task differently due to embodiment differences. Prior to our work, producing rewards from self-supervised embeddings typically required alignment with a reference trajectory, which may be difficult to acquire under stark embodiment differences. We show empirically that if the embeddings are aware of task progress, simply taking the negative distance between the current state and goal state in the learned embedding space is useful as a reward for training policies with reinforcement learning. We find our learned reward function not only works for embodiments seen during training, but also generalizes to entirely new embodiments. Additionally, when transferring real-world human demonstrations to a simulated robot, we find that XIRL is more sample efficient than current best methods. View details
    Preview abstract Rearranging and manipulating deformable objects such as cables, fabrics, and bags is a long-standing challenge in robotic manipulation. The complex dynamics and high-dimensional configuration spaces of deformables, compared to rigid objects, make manipulation difficult not only for multi-step planning, but even for goal specification. Goals cannot be as easily specified as rigid object poses, and may involve complex relative spatial relations such as ``place the item inside the bag". In this work, we develop a suite of simulated benchmarks with 1D, 2D, and 3D deformable structures, including tasks that involve image-based goal-conditioning and multi-step deformable manipulation. We propose embedding goal-conditioning into Transporter Networks, a recently proposed model architecture for robotic manipulation that uses learned template matching to infer displacements that can represent pick and place actions. We demonstrate that goal-conditioned Transporter Networks enable agents to manipulate deformable structures into flexibly specified configurations without test-time visual anchors for target locations. We also significantly extend prior results using Transporter Networks for manipulating deformable objects by testing on tasks with 2D and 3D deformables. View details
    Keypoints into the Future: Self-Supervised Correspondence in Model-Based Reinforcement Learning
    Lucas Manuelli
    Yunzhu Li
    Russ Tedrake
    Conference on Robot Learning (CoRL) (2020)
    Preview abstract Predictive models have been at the core of many robotic systems, from quadrotors to walking robots. However, it has been challenging to develop and apply such models to practical robotic manipulation due to high-dimensional sensory observations such as images. Previous approaches to learning models in the context of robotic manipulation have either learned whole image dynamics or used autoencoders to learn dynamics in a low-dimensional latent state. In this work, we introduce model-based prediction with self-supervised visual correspondence learning, and show that not only is this indeed possible, but demonstrate that these types of predictive models show compelling performance improvements over alternative methods for vision-based RL with autoencoder-type vision training. Through simulation experiments, we demonstrate that our models provide better generalization precision, particularly in 3D scenes, scenes involving occlusion, and in category-generalization. Additionally, we validate that our method effectively transfers to the real world through hardware experiments. View details
    Preview abstract Robotic manipulation can be formulated as inducing a sequence of spatial displacements: where the space being moved can encompass object(s) or an end effector. In this work, we propose the Transporter Network, a simple model architecture that rearranges deep features to infer spatial displacements from visual input -- which can parameterize robot actions. It makes no assumptions of objectness (e.g. canonical poses, models, or keypoints), it exploits spatial symmetries, and is orders of magnitude more sample efficient than our benchmarked alternatives in learning vision-based manipulation tasks: from stacking a pyramid of blocks, to assembling kits with unseen objects; from manipulating deformable ropes, to pushing piles of small objects with closed-loop feedback. Our method can represent complex multi-modal policy distributions and generalizes to multi-step sequential tasks, as well as 6DoF pick-and-place. Experiments on 10 simulated tasks show that it learns faster and generalizes better than a variety of end-to-end baselines, including policies that use ground-truth object poses. We validate our methods with hardware in the real world. View details
    No Results Found