Jing Xie
Research Areas
Authored Publications
Sort By
FieldSwap: Data Augmentation for Effective Form-Like Document Extraction
Seth Ebner
IEEE 40th International Conference on Data Engineering (ICDE) (2024), pp. 4722-4732
Preview abstract
Extracting structured data from visually rich documents like invoices, receipts, financial statements, and tax forms is key to automating many business workflows. However, building extraction models in this domain often demands a large collection of high-quality training examples. To address this challenge, we introduce FieldSwap, a novel data augmentation technique specifically designed for such extraction problems. FieldSwap generates synthetic training examples by replacing key phrases indicative of one field with those corresponding to another. Our experiments on five diverse datasets demonstrate that incorporating FieldSwap-augmented data into the training process can enhance model performance by 1-11 F1 points, particularly when dealing with limited training data (10--100 documents). Additionally, we propose algorithms for automatically inferring key phrases from the training data. Our findings indicate that FieldSwap is effective regardless of whether key phrases are manually provided by human experts or inferred automatically.
View details
Selective Labeling: How to Radically Lower Data-Labeling Costs for Document Extraction Models
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, ACL, pp. 3847-3860
Preview abstract
Building automatic extraction models for visually rich documents like invoices, receipts, bills, tax forms, etc. has received significant attention lately. A key bottleneck in developing extraction models for new document types is the cost of acquiring the several thousand high-quality labeled documents that are needed to train a model with acceptable accuracy. In this paper, we propose selective labeling as a solution to this problem. The key insight is to simplify the labeling task to provide “yes/no” labels for candidate extractions predicted by a model trained on partially labeled documents. We combine this with a custom active learning strategy to find the predictions that the model is most uncertain about. We show through experiments on document types drawn from 3 different domains that selective labeling can reduce the cost of acquiring labeled data by 10× with a negligible loss in accuracy.
View details
Data-Efficient Information Extraction from Form-Like Documents
Document Intelligence Workshop @ KDD 2021
Preview abstract
Automating information extraction from form-like documents at scale is a pressing need due to its potential impact on automating business workflows across many industries like financial services, insurance, and healthcare. The key challenge is that form-like documents in these business workflows can be laid out in virtually infinitely many ways; hence, a good solution to this problem should generalize to documents with unseen layouts and languages. A solution to this problem requires a holistic understanding of both the textual segments and the visual cues within a document, which is non-trivial. While the natural language processing and computer vision communities are starting to tackle this problem, there has not been much focus on (1) data-efficiency, and (2) ability to generalize across different document types and languages.
In this paper, we show that when we have only a small number of labeled documents for training (~50), a straightforward transfer learning approach from a considerably structurally-different larger labeled corpus yields up to a 27 F1 point improvement over simply training on the small corpus in the target domain. We improve on this with a simple multi-domain transfer learning approach, that is currently in production use, and show that this yields up to a further 8 F1 point improvement. We make the case that data efficiency is critical to enable information extraction systems to scale to handle hundreds of different document-types, and learning good representations is critical to accomplishing this.
View details
Preview abstract
Consider a sequential active learning problem where, at each round, an agent selects a batch of unlabeled data points, queries their labels and updates a binary classifier. While there exists a rich body of work on active learning in this general form, in this paper, we focus on problems with two distinguishing characteristics: severe class imbalance (skew) and small amounts of training data. Both of these problems occur with surprising frequency in many web applications. For instance, detecting offensive or sensitive content in online communities (pornography, violence, and hate-speech) is receiving enormous attention from industry as well as research communities. Such problems have both the characteristics we describe -- a vast majority content is {\em not} offensive, so the number of positive examples for such content is orders of magnitude smaller than the negative examples. Further, there is usually only a small amount of initial training data available when building machine-learned models to solve such problems. To address both these issues, we propose a hybrid active learning algorithm (HAL) that balances exploiting the knowledge available through the currently labeled training examples with exploring the large amount of unlabeled data available. Through simulation results, we show that HAL makes significantly better choices for what points to label when compared to strong baselines like margin-sampling. Classifiers trained on the examples selected for labeling by HAL easily out-perform the baselines on target metrics (like recall at a high precision threshold and area under the precision-recall curve) given the same budget for labeling examples. We believe HAL offers a simple, intuitive, and computationally tractable way to structure active learning that can significantly amplify the impact (or alternately, reduce the cost) of human labeling for a wide range of web applications.
View details
Anatomy of a Privacy-Safe Large-Scale Information Extraction System Over Email
24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM (2018), pp. 734-743
Preview abstract
Extracting structured data from emails can enable several assistive experiences, such as reminding the user when a bill payment is due, answering queries about the departure time of a booked flight, or proactively surfacing an emailed discount coupon while the user is at that store.
This paper presents Juicer, a system for extracting information from email that is serving over a billion Gmail users daily. We describe how the design of the system was informed by three key principles: scaling to a planet-wide email service, isolating the complexity to provide a simple experience for the developer, and safeguarding the privacy of users (our team and the developers we support are not allowed to view any single email). We describe the design tradeoffs made in building this system, the challenges faced and the approaches used to tackle them. We present case studies of three extraction tasks implemented on this platform—bill reminders, commercial offers, and hotel reservations—to illustrate the effectiveness of the platform despite challenges unique to each task. Finally, we outline several areas of ongoing research in large-scale machine-learned information extraction from email.
View details