Jump to Content
Beliz Gunel

Beliz Gunel

Beliz Gunel is a Research Scientist in Google Research. She currently focuses on using large language models for structured summarization. Her research interests lie broadly at the intersection of natural language processing, data-efficient machine learning, and representation learning. She earned her PhD from Stanford University (2022) where she worked on leveraging prior knowledge and structure for data-efficient machine learning.
Authored Publications
Google Publications
Other Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Preview abstract Comparative decisions, such as picking between two cars or deciding between two hiking trails, require the users to visit multiple webpages and contrast the choices along relevant aspects. Given the impressive capabilities of pre-trained large language models, we ask whether they can help automate such analysis. We refer to this task as extractive aspect-based contrastive summarization which involves constructing a structured summary that compares the choices along relevant aspects. In this paper, we propose a novel method called STRUM for this task that can generalize across domains without requiring any human-written summaries or fixed aspect list as supervision. Given a set of relevant input webpages, STRUM solves this problem using two pre-trained T5-based large language models: first one fine-tuned for aspect and value extraction, and second one fine-tuned for natural language inference. We showcase the abilities of our method across different domains, identify shortcomings, and discuss questions that we believe will be critical in this new line of research. View details
    Preview abstract Automating information extraction from form-like documents at scale is a pressing need due to its potential impact on automating business workflows across many industries like financial services, insurance, and healthcare. The key challenge is that form-like documents in these business workflows can be laid out in virtually infinitely many ways; hence, a good solution to this problem should generalize to documents with unseen layouts and languages. A solution to this problem requires a holistic understanding of both the textual segments and the visual cues within a document, which is non-trivial. While the natural language processing and computer vision communities are starting to tackle this problem, there has not been much focus on (1) data-efficiency, and (2) ability to generalize across different document types and languages. In this paper, we show that when we have only a small number of labeled documents for training (~50), a straightforward transfer learning approach from a considerably structurally-different larger labeled corpus yields up to a 27 F1 point improvement over simply training on the small corpus in the target domain. We improve on this with a simple multi-domain transfer learning approach, that is currently in production use, and show that this yields up to a further 8 F1 point improvement. We make the case that data efficiency is critical to enable information extraction systems to scale to handle hundreds of different document-types, and learning good representations is critical to accomplishing this. View details
    Preview abstract Extracting structured information from templatic documents is an important problem with the potential to automate many real-world business workflows such as payment, procurement, and payroll. The core challenge is that such documents can be laid out in virtually infinitely different ways. A good solution to this problem is one that generalizes well not only to known templates such as invoices from a known vendor, but also to unseen ones. We developed a system called Glean to tackle this problem. Given a target schema for a document type and some labeled documents of that type, Glean uses machine learning to automatically extract structured information from other documents of that type. In this paper, we describe the overall architecture of Glean, and discuss three key data management challenges : 1) managing the quality of ground truth data, 2) generating training data for the machine learning model using labeled documents, and 3) building tools that help a developer rapidly build and improve a model for a given document type. Through empirical studies on a real-world dataset, we show that these data management techniques allow us to train a model that is over 5 F1 points better than the exact same model architecture without the techniques we describe. We argue that for such information-extraction problems, designing abstractions that carefully manage the training data is at least as important as choosing a good model architecture. View details
    No Results Found