Jason Lee
Jason Lee is a Software Engineer in Google Research and a member of the Graph Mining team. His interests include large-scale clustering, explainability, and near-duplicate detection for a variety of applications.
Authored Publications
Sort By
Preview abstract
Neural embedding models have become a fundamental component of modern information retrieval (IR) pipelines. These models produce a single embedding x ∈ R^d per data-point, allowing for fast retrieval via highly optimized maximum inner product search (MIPS) algorithms. Recently, beginning with the landmark ColBERT paper, multi-vector models, which produce a set of embedding per data point, have achieved markedly superior performance for IR tasks. Unfortunately, using these models for IR is computationally expensive due to the increased complexity of multi-vector retrieval and scoring.
In this paper, we introduce MUVERA (Multi-Vector Retrieval Algorithm), a retrieval mechanism which reduces multi-vector similarity search to single-vector similarity search. This enables the usage of off-the-shelf MIPS solvers for multi-vector retrieval. MUVERA asymmetrically generates Fixed Dimensional Encodings (FDEs) of queries and documents, which are vectors whose inner product approximates multi-vector similarity. We prove that FDEs give high-quality ε-approximations, thus providing the first single-vector proxy for multi-vector similarity with theoretical guarantees. Empirically, we find that FDEs achieve the same recall as prior state-of-the-art heuristics while retrieving 2-5× fewer candidates. Compared to prior state of the art implementations, MUVERA achieves consistently good end-to-end recall and latency across a diverse set of the BEIR retrieval datasets, achieving an average of 10% improved recall with 90% lower latency.
View details
Preview abstract
We introduceTeraHAC, a (1+epsilon)-approximate hierarchical agglomerative clustering (HAC) algorithm whichs cales to trillion-edge graphs. Our algorithm is based on a new approach to computing (1+epsilon)-approximate HAC, which is a novel combination of the nearest-neighbor chain algorithm and the notion of (1+epsilon)-approximate HAC. Our approach allows us to partition the graph among multiple machines and make significant progress in computing the clustering within each partition before any communication with other partitions is needed.We evaluate TeraHAC on a number of real-world and synthetic graphs of up to 8 trillion edges. We show that TeraHAC requires over 100x fewer rounds compared to previously known approaches for computing HAC. It is up to 8.3x faster than SCC, the state-of-the-art distributed algorithm for hierarchical clustering, while achieving 1.16x higher quality. In fact, TeraHAC essentially retains the quality of the celebrated HAC algorithm while significantly improving the running time.
View details