Jump to Content
Derek G. Murray

Derek G. Murray

Derek currently works on Machine Learning Frameworks in the Core ML group. Previously, he was a member of the Google Brain team, working on TensorFlow, tf.data, and related machine learning infrastructure.
Authored Publications
Google Publications
Other Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    tf.data: A Machine Learning Data Processing Framework
    Jiri Simsa
    Ana Klimovic
    Ihor Indyk
    VLDB '21: 47th International Conference on Very Large Data Bases (2021)
    Preview abstract Training machine learning models requires feeding input data for models to ingest. Input pipelines for machine learning jobs are often challenging to implement efficiently as they require reading large volumes of data, applying complex transformations, and transferring data to hardware accelerators while overlapping computation and communication to achieve optimal performance. We present tf.data, a framework for building and executing efficient input pipelines for machine learning jobs. The tf.data API provides operators which can be parameterized with user-defined computation, composed, and reused across different machine learning domains. These abstractions allow users to focus on the application logic of data processing, while tf.data's runtime ensures that pipelines run efficiently. We demonstrate that input pipeline performance is critical to the end-to-end training time of state-of-the-art machine learning models. tf.data delivers the high performance required, while avoiding the need for manual tuning of performance knobs. We show that tf.data features, such as parallelism, caching, static optimizations, and non-deterministic execution are essential for optimal performance. Finally, we characterize machine learning input pipelines for millions of jobs that ran in our organization's fleet, showing that input data processing is highly diverse and consumes a significant fraction of job resources. Our analysis motivates future research directions, such as sharing computation across jobs and pushing data projection to the storage layer. View details
    Dynamic Control Flow in Large-Scale Machine Learning
    Yuan Yu
    Eugene Brevdo
    Mike Burrows
    Tim Harley
    Peter Hawkins
    Manjunath Kudlur
    Rajat Monga
    Xiaoqiang Zheng
    Proceedings of EuroSys 2018
    Preview abstract Many recent machine learning models rely on fine-grained dynamic control flow for training and inference. In particular, models based on recurrent neural networks and on reinforcement learning depend on recurrence relations, data-dependent conditional execution, and other features that call for dynamic control flow. These applications benefit from the ability to make rapid control-flow decisions across a set of computing devices in a distributed system. For performance, scalability, and expressiveness, a machine learning system must support dynamic control flow in distributed and heterogeneous environments. This paper presents a programming model for distributed machine learning that supports dynamic control flow. We describe the design of the programming model, and its implementation in TensorFlow, a distributed machine learning system. Our approach extends the use of dataflow graphs to represent machine learning models, offering several distinctive features. First, the branches of conditionals and bodies of loops can be partitioned across many machines to run on a set of heterogeneous devices, including CPUs, GPUs, and custom ASICs. Second, programs written in our model support automatic differentiation and distributed gradient computations, which are necessary for training machine learning models that use control flow. Third, our choice of non-strict semantics enables multiple loop iterations to execute in parallel across machines, and to overlap compute and I/O operations. We have done our work in the context of TensorFlow, and it has been used extensively in research and production. We evaluate it using several real-world applications, and demonstrate its performance and scalability. View details
    A Computational Model for TensorFlow (An Introduction)
    1st ACM SIGPLAN Workshop on Machine Learning and Programming Languages (MAPL 2017) (2017)
    Preview abstract TensorFlow is a powerful, programmable system for machine learning. This paper aims to provide the basics of a conceptual framework for understanding the behavior of TensorFlow models during training and inference: it describes an operational semantics, of the kind common in the literature on programming languages. More broadly, the paper suggests that a programming-language perspective is fruitful in designing and in explaining systems such as TensorFlow. View details
    Preview abstract We describe the timely dataflow model for distributed computation and its implementation in the Naiad system. The model supports stateful iterative and incremental computations. It enables both low-latency stream processing and high-throughput batch processing, using a new approach to coordination that combines asynchronous and fine-grained synchronous execution. We describe two of the programming frameworks built on Naiad: GraphLINQ for parallel graph processing, and differential dataflow for nested iterative and incremental computations. We show that a general-purpose system can achieve performance that matches, and sometimes exceeds, that of specialized systems. View details
    TensorFlow: A system for large-scale machine learning
    Jianmin Chen
    Matthieu Devin
    Geoffrey Irving
    Manjunath Kudlur
    Rajat Monga
    Benoit Steiner
    Paul Tucker
    Vijay Vasudevan
    Pete Warden
    Yuan Yu
    Xiaoqiang Zheng
    12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), USENIX Association (2016), pp. 265-283
    Preview abstract TensorFlow is a machine learning system that operates at large scale and in heterogeneous environments. TensorFlow uses dataflow graphs to represent computation, shared state, and the operations that mutate that state. It maps the nodes of a dataflow graph across many machines in a cluster, and within a machine across multiple computational devices, including multicore CPUs, general-purpose GPUs, and custom-designed ASICs known as Tensor Processing Units (TPUs). This architecture gives flexibility to the application developer: whereas in previous “parameter server” designs the management of shared state is built into the system, TensorFlow enables developers to experiment with novel optimizations and training algorithms. TensorFlow supports a variety of applications, with a focus on training and inference on deep neural networks. Several Google services use TensorFlow in production, we have released it as an open-source project, and it has become widely used for machine learning research. In this paper, we describe the TensorFlow dataflow model and demonstrate the compelling performance that Tensor- Flow achieves for several real-world applications. View details
    TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems
    Ashish Agarwal
    Eugene Brevdo
    Craig Citro
    Matthieu Devin
    Ian Goodfellow
    Andrew Harp
    Geoffrey Irving
    Yangqing Jia
    Rafal Jozefowicz
    Lukasz Kaiser
    Manjunath Kudlur
    Dan Mané
    Rajat Monga
    Chris Olah
    Mike Schuster
    Jonathon Shlens
    Benoit Steiner
    Ilya Sutskever
    Kunal Talwar
    Paul Tucker
    Vijay Vasudevan
    Pete Warden
    Yuan Yu
    Xiaoqiang Zheng
    tensorflow.org (2015)
    Preview abstract TensorFlow is an interface for expressing machine learning algorithms, and an implementation for executing such algorithms. A computation expressed using TensorFlow can be executed with little or no change on a wide variety of heterogeneous systems, ranging from mobile devices such as phones and tablets up to large-scale distributed systems of hundreds of machines and thousands of computational devices such as GPU cards. The system is flexible and can be used to express a wide variety of algorithms, including training and inference algorithms for deep neural network models, and it has been used for conducting research and for deploying machine learning systems into production across more than a dozen areas of computer science and other fields, including speech recognition, computer vision, robotics, information retrieval, natural language processing, geographic information extraction, and computational drug discovery. This paper describes the TensorFlow interface and an implementation of that interface that we have built at Google. The TensorFlow API and a reference implementation were released as an open-source package under the Apache 2.0 license in November, 2015 and are available at www.tensorflow.org. View details
    Naiad: a timely dataflow system
    Frank McSherry
    Rebecca Isaacs
    SOSP (2013), pp. 439-455