Jump to Content

Bhaktipriya Radharapu

Research Areas

Authored Publications
Google Publications
Other Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Safety and Fairness for Content Moderation in Generative Models
    Susan Hao
    Piyush Kumar
    Sarah Laszlo
    CVPR Workshop on Ethical Considerations in Creative applications of Computer Vision (2023)
    Preview abstract With significant advances in generative AI, new technologies are rapidly being deployed with generative components. Generative models are typically trained on large datasets, resulting in model behaviors that can mimic the worst of the content in the training data. Responsible deployment of generative technologies requires content moderation strategies, such as safety input and output filters. Here, we provide a theoretical framework for conceptualizing responsible content moderation of text-to-image generative technologies, including a demonstration of how to empirically measure the constructs we enumerate. We define and distinguish the concepts of safety, fairness, and metric equity, and enumerate example harms that can come in each domain. We then provide a demonstration of how the defined harms can be quantified. We conclude with a summary of how the style of harms quantification we demonstrate enables data-driven content moderation decisions. View details
    AART: AI-Assisted Red-Teaming with Diverse Data Generation for New LLM-powered Applications
    Lora Aroyo
    The 2023 Conference on Empirical Methods in Natural Language Processing (2023) (to appear)
    Preview abstract Adversarial testing of large language models (LLMs) is crucial for their safe and responsible deployment. We introduce a novel approach for automated generation of adversarial evaluation datasets to test the safety of LLM generations on new downstream applications. We call it AI-assisted Red-Teaming (AART) - an automated alternative to current manual red-teaming efforts. AART offers a data generation and augmentation pipeline of reusable and customizable recipes that reduce human effort significantly and enable integration of adversarial testing earlier in new product development. AART generates evaluation datasets with high diversity of content characteristics critical for effective adversarial testing (e.g. sensitive and harmful concepts, specific to a wide range of cultural and geographic regions and application scenarios). The data generation is steered by AI-assisted recipes to define, scope and prioritize diversity within the application context. This feeds into a structured LLM-generation process that scales up evaluation priorities. Compared to some state-of-the-art tools, AART shows promising results in terms of concept coverage and data quality. View details
    No Results Found