Alok Kumar
Research Areas
Authored Publications
Sort By
BwE: Flexible, Hierarchical Bandwidth Allocation for WAN Distributed Computing
Björn Carlin
C. Stephen Gunn
Enrique Cauich Zermeno
Jing Ai
Mathieu Robin
Nikhil Kasinadhuni
Sushant Jain
ACM SIGCOMM 2015 (to appear)
Preview abstract
WAN bandwidth remains a constrained resource that is economically infeasible to substantially overprovision. Hence,it is important to allocate capacity according to service priority and based on the incremental value of additional allocation in particular bandwidth regions. For example, it may be highest priority for one service to receive 10Gb/s of bandwidth but upon reaching such an allocation, incremental priority may drop sharply favoring allocation to other services. Motivated by the observation that individual flows with fixed priority may not be the ideal basis for bandwidth allocation, we present the design and implementation of Bandwidth Enforcer (BwE), a global, hierarchical bandwidth allocation infrastructure. BwE supports: i) service-level bandwidth allocation following prioritized bandwidth functions where a service can represent an arbitrary collection of ows, ii) independent allocation and delegation policies according to user-defined hierarchy, all accounting for a global view of bandwidth and failure conditions, iii) multi-path forwarding common in traffic-engineered networks, and iv) a central administrative point to override (perhaps faulty) policy during exceptional conditions. BwE has delivered more service-efficient bandwidth utilization and simpler management in production for multiple years.
View details
BwE: Flexible, Hierarchical Bandwidth Allocation for WAN Distributed Computing
Sushant Jain
Nikhil Kasinadhuni
Enrique Cauich Zermeno
C. Stephen Gunn
Jing Ai
Björn Carlin
Mathieu Robin
Amin Vahdat
Sigcomm '15, Google Inc (2015)
Preview abstract
WAN bandwidth remains a constrained resource that is economically infeasible to substantially overprovision. Hence, it is important to allocate capacity according to service priority and based on the incremental value of additional allocation. For example, it may be the highest priority for one service to receive 10Gb/s of bandwidth but upon reaching such an allocation, incremental priority may drop sharply favoring allocation to other services. Motivated by the observation that individual flows with fixed priority may not be the ideal basis for bandwidth allocation, we present the design and implementation of Bandwidth Enforcer (BwE), a global, hierarchical bandwidth allocation infrastructure. BwE supports: i) service-level bandwidth allocation following prioritized bandwidth functions where a service can represent an arbitrary collection of flows, ii) independent allocation and delegation policies according to user-defined hierarchy, all accounting for a global view of bandwidth and failure conditions, iii) multi-path forwarding common in traffic-engineered networks, and iv) a central administrative point to override (perhaps faulty) policy during exceptional conditions. BwE has delivered more service-efficient bandwidth utilization and simpler management in production for multiple years.
View details
B4: Experience with a Globally Deployed Software Defined WAN
Preview
Sushant Jain
Joon Ong
Subbaiah Venkata
Jim Wanderer
Junlan Zhou
Min Zhu
Amin Vahdat
Proceedings of the ACM SIGCOMM Conference, Hong Kong, China (2013)
Upward Max Min Fairness
Preview
Emilie Danna
Yishay Mansour
INFOCOM (2012)