Anton Kast

Anton Kast

Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Preview abstract TAE Technologies, Inc. (TAE) is pursuing an alternative approach to magnetically confined fusion, which relies on field-reversed configuration (FRC) plasmas composed of mostly energetic and well-confined particles by means of a state-of-the-art tunable energy neutral-beam (NB) injector system. TAE’s current experimental device, C-2W (also called “Norman”), is the world’s largest compact-toroid device and has made significant progress in FRC performance, producing record breaking, high temperature (electron temperature, Te >500 eV; total electron and ion temperature, Ttot >3 keV) advanced beam-driven FRC plasmas, dominated by injected fast particles and sustained in steady-state for up to 30 ms, which is limited by NB pulse duration. C-2W produces significantly better FRC performance than the preceding C-2U experiment, in part due to Google’s machine-learning framework for experimental optimization, which has contributed to the discovery of a new operational regime where novel settings for the formation sections yield consistently reproducible, hot, and stable plasmas. Active plasma control system has been developed and utilized in C-2W to produce consistent FRC performance as well as for reliable machine operations using magnets, electrodes, gas injection, and tunable NBs. The active control system has demonstrated a stabilization of FRC axial instability. Overall FRC performance is well correlated with NBs and edge-biasing system, where higher total plasma energy is obtained with increasing both NB injection power and applied-voltage on biasing electrodes. C-2W divertors have demonstrated a good electron heat confinement on open-field-lines using strong magnetic mirror fields as well as expanding the magnetic field in the divertors (expansion ratio >30); the electron energy lost per ion, ~6–8, is achieved, which is close to the ideal theoretical minimum. View details
    Preview abstract We determined the time-dependent geometry including high-frequency oscillations of the plasma density in TAE’s C2W experiment. This was done as a joint Bayesian reconstruction from a 14-chord FIR interferometer in the midplane, 32 Mirnov probes at the periphery, and 8 shine-through detectors at the targets of the neutral beams. For each point in time we recovered, with credibility intervals: the radial density profile of the plasma; bulk plasma displacement; amplitudes, frequencies and phases of the azimuthal modes n=1 to n=4. Also reconstructed were the radial profiles of the deformations associated with each of the azimuthal modes. Bayesian posterior sampling was done via Hamiltonian Monte Carlo with custom preconditioning. This gave us a comprehensive uncertainty quantification of the reconstructed values, including correlations and some understanding of multimodal posteriors. This method was applied to thousands of experimental shots on C-2W, producing a rich data set for analysis of plasma performance. View details
    The Open Reaction Database
    Abigail G. Doyle
    Connor W. Coley
    Joel M. Hawkins
    Klavs F. Jensen
    Michael R. Maser
    Michael Wleklinski
    Spencer D. Dreher
    (2021)
    Preview abstract Chemical reaction data in journal articles, patents, and even electronic laboratory notebooks are currently stored in various formats, often unstructured, which presents a significant barrier to downstream applications, including the training of machine learning models. We present the Open Reaction Database (ORD), an open access schema and infrastructure for structuring and sharing organic reaction data, including a centralized data repository. The ORD schema supports conventional and emerging technologies, from benchtop reactions to automated high-throughput experiments and flow chemistry. The data, schema, supporting code, and web-based user interfaces are all publicly available on GitHub. Our vision is that a consistent data representation and infrastructure to support data sharing will enable downstream applications that will greatly improve the state of the art with respect to computer-aided synthesis planning, reaction prediction, and other predictive chemistry tasks. View details