Yonghui Wu
Yonghui Wu joined Google in Sep 2008 first as a ranking engineer improving Google's core web search ranking algorithm. Since Jan 2015, he has been with the Google Brain team focus on deep learning and its applications. His research interests are in Information Retrieval, Learning to Rank, Machine Learning, Machine Translation, Natural Language Processing and etc.
Authored Publications
Sort By
VideoCoCa: Video-Text Modeling with Zero-Shot Transfer from Contrastive Captioners
Shen Yan
Tao Zhu
Zirui Wang
Mi Zhang
Soham Ghosh
Jiahui Yu
arxiv.org, Cornell University (2023)
Preview abstract
We explore an efficient approach to establish a foundational video-text model. We present VideoCoCa that maximally reuses a pretrained image-text contrastive captioner (CoCa) model and adapt it to video-text tasks with minimal extra training. While previous works adapt image-text models with various cross-frame fusion modules, we find that the generative attentional pooling and contrastive attentional pooling layers in CoCa are instantly adaptable to flattened frame embeddings, yielding state-of-the-art results on zero-shot video classification and zero-shot text-to-video retrieval. Furthermore, we explore lightweight finetuning on top of VideoCoCa, and achieve strong results on video question-answering and video captioning.
View details
Preview abstract
Building universal dialogue systems that operate across multiple domains/APIs and generalize to new ones with minimal overhead is a critical challenge. Recent works have leveraged natural language descriptions of schema elements to enable such systems; however, descriptions only indirectly convey schema semantics. In this work, we propose Show, Don't Tell, which prompts seq2seq models with a labeled example dialogue to show the semantics of schema elements rather than tell the model through descriptions. While requiring similar effort from service developers as generating descriptions, we show that using short examples as schema representations with large language models results in state-of-the-art performance on two popular dialogue state tracking benchmarks designed to measure zero-shot generalization - the Schema-Guided Dialogue dataset and the MultiWOZ leave-one-out benchmark.
View details
Pathways: Asynchronous Distributed Dataflow for ML
Aakanksha Chowdhery
Ruoming Pang
Sudip Roy
Brennan Saeta
Parker Edward Schuh
Ryan Sepassi
MLSys 2022 (2022) (to appear)
Preview abstract
We present the design of a new large scale orchestration layer for accelerators. Our system, Pathways, is explicitly designed to enable exploration of new systems and ML research ideas, while retaining state of the art performance for current models. Pathways uses a sharded dataflow graph of asynchronous operators that consume and produce futures, and efficiently gang-schedules heterogeneous parallel computations on thousands of accelerators while coordinating data transfers over their dedicated interconnects. Pathways makes use of a novel asynchronous distributed dataflow design that lets the control plane execute in parallel despite dependencies in the data plane. This design, with careful engineering, allows Pathways to adopt a single-controller model that makes it easier to express complex new parallelism patterns. We demonstrate that Pathways can achieve performance parity (~100% accelerator utilization) with state-of-the-art systems when running SPMD computations over 2048 TPUs, while also delivering throughput comparable to the SPMD case for Transformer models that are pipelined across 16 stages, or sharded across two islands of accelerators connected over a data center network.
View details
Training Text-To-Speech Systems From Synthetic Data: A Practical Approach For Accent Transfer Tasks
Lev Finkelstein
Norman Casagrande
Ye Jia
Alexey Petelin
Jonathan Shen
Yu Zhang
Interspeech (2022)
Preview abstract
Transfer tasks in text-to-speech (TTS) synthesis — where one
or more aspects of the speech of one set of speakers is transferred
to another set of speakers that do not feature these aspects originally —
remains a challenging task. One of the challenges is that models
that have high-quality transfer capabilities can have issues in stability,
making them impractical for user-facing critical tasks. This paper
demonstrates that transfer can be obtained by training an robust TTS
system on data generated by a less robust TTS system designed for a high-quality
transfer task; In particular, a CHiVE-BERT monolingual TTS
system is trained on the output of a Tacotron model designed
for accent transfer. While some quality loss is inevitable with
this approach, experimental results show that the models trained
on synthetic data this way can produce high quality audio displaying accent
transfer, while preserving speaker characteristics such as speaking style.
View details
Sparsely Activated Language Models are Efficient In-Context Learners
Barret Richard Zoph
Dmitry (Dima) Lepikhin
Emma Wang
Kathy Meier-Hellstern
Kun Zhang
Liam B. Fedus
Maarten Paul Bosma
Marie Pellat
Maxim Krikun
Nan Du
Simon Tong
Tao Wang
Toju Duke
Yuanzhong Xu
Zongwei Zhou
(2022)
Preview abstract
Scaling language models with more data, compute and parameters has driven significant progress in natural language processing. For example, thanks to scaling, GPT-3 was able to achieve strong performance on few-shot learning. However, training these large dense models require significant amounts of computing resources. In this paper, we develop a family of sparsely activated mixture-of-expert language models named \glam (\textbf{G}eneralist \textbf{La}nguage \textbf{M}odel), which can have many more parameters but require significant less training cost than dense models. The largest \glam has 1.2 trillion parameters, which is approximately 7x larger than GPT-3 but can be trained more efficiently. With only 1/3 of energy consumption to train GPT-3, \glam achieves better overall performance on 29 zero-shot and one-shot NLP tasks. For example, \glam gets 75.0\% one-shot exact match accuracy on the TriviaQA test server, a significant improvement over 68.0\% obtained by GPT-3.
View details
Description-Driven Task-Oriented Dialog Modeling
Dian Yu
Mingqiu Wang
Preview abstract
Task-oriented dialogue (TOD) systems are required to identify key information from conversations for the completion of given tasks. Such information is conventionally specified in terms of intents and slots contained in task-specific ontology or schemata. Since these schemata are designed by system developers, the naming convention for slots and intents is not uniform across tasks, and may not convey their semantics effectively. This can lead to models memorizing arbitrary patterns in data, resulting in suboptimal performance and generalization. In this paper, we propose that schemata should be modified by replacing names or notations entirely with natural language descriptions. We show that a language description-driven system exhibits better understanding of task specifications, higher performance on state tracking, improved data efficiency, and effective zero-shot transfer to unseen tasks. Following this paradigm, we present a simple yet effective Description-Driven Dialog State Tracking (D3ST) model, which relies purely on schema descriptions and an "index-picking" mechanism. We demonstrate the superiority in quality, data efficiency and robustness of our approach as measured on the MultiWOZ (Budzianowski et al.,2018), SGD (Rastogi et al., 2020), and the recent SGD-X (Lee et al., 2021) benchmarks.
View details
Building Machine Translation Systems for the Next Thousand Languages
Julia Kreutzer
Mengmeng Niu
Pallavi Nikhil Baljekar
Xavier Garcia
Maxim Krikun
Pidong Wang
Apu Shah
Macduff Richard Hughes
Google Research (2022)
SGD-X: A Benchmark for Robust Generalization in Schema-Guided Dialogue Systems
Bin Zhang
AAAI Conference on Artificial Intelligence, Association for the Advancement of Artificial Intelligence (2022)
Preview abstract
Zero/few-shot transfer to unseen services is a critical challenge in task-oriented dialogue research. The Schema-Guided Dialogue (SGD) dataset introduced a paradigm for enabling models to support any service in zero-shot through schemas, which describe service APIs to models in natural language. We explore the robustness of dialogue systems to linguistic variations in schemas by designing SGD-X - a benchmark extending SGD with semantically similar yet stylistically diverse variants for every schema. We observe that two top state tracking models fail to generalize well across schema variants, measured by joint goal accuracy and a novel metric for measuring schema sensitivity. Additionally, we present a simple model-agnostic data augmentation method to improve schema robustness.
View details
CoCa: Contrastive Captioners are Image-Text Foundation Models
Jiahui Yu
Zirui Wang
Vijay Vasudevan
Transactions on Machine Learning Research, Aug 2022 (2022)
Preview abstract
Exploring large-scale pretrained foundation models is of significant interest in computer vision because these models can be quickly transferred to many downstream tasks. This paper presents Contrastive Captioner (CoCa), a minimalist design to pretrain an image-text encoder-decoder foundation model jointly with contrastive loss and captioning loss, thereby subsuming model capabilities from contrastive approaches like CLIP and generative methods like SimVLM. In contrast to standard encoder-decoder transformers where all decoder layers attend to encoder outputs, CoCa omits cross-attention in the first half of decoder layers to encode unimodal text representations, and cascades the remaining decoder layers which cross-attend to the image encoder for multimodal image-text representations. We apply a contrastive loss between unimodal image and text embeddings, in addition to a captioning loss on the multimodal decoder outputs which predicts text tokens autoregressively. By sharing the same computational graph, the two training objectives are computed efficiently with minimal overhead. CoCa is pretrained end-to-end and from scratch on both web-scale alt-text data and annotated images by treating all labels simply as text, seamlessly unifying natural language supervision for representation learning. Empirically, CoCa achieves state-of-the-art performance with zero-shot transfer or minimal task-specific adaptation on a broad range of downstream tasks, spanning visual recognition (ImageNet, Kinetics-400/600/700, Moments-in-Time), crossmodal retrieval (MSCOCO, Flickr30K, MSR-VTT), multimodal understanding (VQA, SNLI-VE, NLVR2), and image captioning (MSCOCO, NoCaps). Notably on ImageNet classification, CoCa obtains 86.3% zero-shot top-1 accuracy, 90.6% with a frozen encoder and learned classification head, and new state-of-the-art 91.0% top-1 accuracy on ImageNet with a finetuned encoder.
View details
Preview abstract
This paper introduces a new encoder model for neural TTS. The proposed model, called PnG BERT, is augmented from the original BERT model, but taking both phoneme and grapheme representation of a text, as well as the word-level alignment between them, as its input. It can be pre-trained on a large text corpus in a self-supervised manner then fine-tuned in a TTS task. The experimental results suggest that PnG BERT can significantly further improve the performance of a state-of-the-art neural TTS model, by producing more appropriate prosody and more accurate pronunciation. Subjective side-by-side preference evaluation showed that raters had no statistically significant preference between the synthesized speech and the ground truth recordings from professional speakers.
View details