Hartwig Adam

Hartwig Adam

Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    VideoPoet: A Large Language Model for Zero-Shot Video Generation
    Dan Kondratyuk
    Xiuye Gu
    Jonathan Huang
    Grant Schindler
    Rachel Hornung
    Vighnesh Birodkar
    Jimmy Yan
    Ming-Chang Chiu
    Hassan Akbari
    Josh Dillon
    Agrim Gupta
    Meera Hahn
    Anja Hauth
    David Hendon
    Alonso Martinez
    Kihyuk Sohn
    Xuan Yang
    Huisheng Wang
    Lu Jiang
    ICML (2024)
    Preview abstract We present VideoPoet, a language model capable of synthesizing high-quality video, with matching audio, from a large variety of conditioning signals. VideoPoet employs a decoder-only transformer architecture that processes multimodal inputs -- including images, videos, text, and audio. The training protocol follows that of Large Language Models (LLMs), consisting of two stages: pretraining and task-specific adaptation. During pretraining, VideoPoet incorporates a mixture of multimodal generative objectives within an autoregressive Transformer framework. The pretrained LLM serves as a foundation that can be adapted for a range of video generation tasks. We present empirical results demonstrating the model's state-of-the-art capabilities in zero-shot video generation, specifically highlighting VideoPoet's ability to generate high-fidelity motions. Project page: http://sites.research.google/videopoet/ View details
    Preview abstract This work focuses on training a single visual relationship detector predicting over the union of label spaces from multiple datasets. Merging labels spanning different datasets could be challenging due to inconsistent taxonomies. The issue is exacerbated in visual relationship detection when second-order visual semantics are introduced between pairs of objects. To address this challenge, we propose UniVRD, a novel bottom-up method for Unified Visual Relationship Detection by leveraging vision and language models (VLMs). VLMs provide well-aligned image and text embeddings, where similar relationships are optimized to be close to each other for semantic unification. Our bottom-up design enables the model to enjoy the benefit of training with both object detection and visual relationship datasets. Empirical results on both human-object interaction detection and scene-graph generation demonstrate the competitive performance of our model. UniVRD achieves 38.07 mAP on HICO-DET, outperforming the current best bottom-up HOI detector by 14.26 mAP. More importantly, we show that our unified detector performs as well as dataset-specific models in mAP, and achieves further improvements when we scale up the model. Our code will be made publicly available on GitHub. View details
    Alternating Gradient Descent and Mixture-of-Experts for Integrated Multimodal Perception
    Hassan Akbari
    Dan Kondratyuk
    Yin Cui
    Rachel Hornung
    Huisheng Wang
    NeurIPS (2023)
    Preview abstract We present Integrated Multimodal Perception (IMP), a simple and scalable multimodal multi-task training and modeling approach. IMP integrates multimodal inputs including image, video, text, and audio into a single Transformer encoder with minimal modality-specific components. IMP makes use of a novel design that combines Alternating Gradient Descent (AGD) and Mixture-of-Experts (MoE) for efficient model and task scaling. We conduct extensive empirical studies and reveal the following key insights: 1) Performing gradient descent updates by alternating on diverse modalities, loss functions, and tasks, with varying input resolutions, efficiently improves the model. 2) Sparsification with MoE on a single modality-agnostic encoder substantially improves the performance, outperforming dense models that use modality-specific encoders or additional fusion layers and greatly mitigates the conflicts between modalities. IMP achieves competitive performance on a wide range of downstream tasks including video classification, image classification, image-text, and video-text retrieval. Most notably, we train a sparse IMP-MoE-L variant focusing on video tasks that achieves new state-of-the-art in zero-shot video classification: 77.0% on Kinetics-400, 76.8% on Kinetics-600, and 68.3% on Kinetics-700, improving the previous state-of-the-art by +5%, +6.7%, and +5.8%, respectively, while using only 15% of their total training computational cost. View details
    Surrogate Gap Minimization Improves Sharpness Aware Training
    Juntang Zhuang
    Boqing Gong
    Liangzhe Yuan
    Yin Cui
    Nicha C. Dvornek
    Sekhar Tatikonda
    James S. Duncan
    International Conference on Learning Representations (ICLR) (2022)
    Preview abstract The recently proposed Sharpness-Aware Minimization (SAM) improves generalization by minimizing a perturbed loss defined as the maximum loss within a neighborhood in the parameter space. However, we show that both sharp and flat minima can have a low perturbed loss, implying that SAM does not always prefer flat minima. Instead, we define a surrogate gap, a measure equivalent to the dominant eigenvalue of Hessian at a local minimum when the radius of neighborhood (to derive the perturbed loss) is small. The surrogate gap is easy to compute and feasible for direct minimization during training. Based on the above observations, we propose Surrogate Gap Guided Sharpness-Aware Minimization (GSAM), a novel improvement over SAM with negligible computation overhead. Conceptually, GSAM consists of two steps: 1) a gradient descent like SAM to minimize the perturbed loss, and 2) an ascent step in the orthogonal direction (after gradient decomposition) to minimize the surrogate gap and yet not affect the perturbed loss. GSAM seeks a region with both small loss (by step 1) and low sharpness (by step 2), giving rise to a model with high generalization capabilities. Theoretically, we show the convergence of GSAM and provably better generalization than SAM.Empirically, GSAM consistently improves generalization (e.g., +3.2% over SAM and +5.4% over AdamW on ImageNet top-1 accuracy for ViT-B/32). Code is released at https://sites.google.com/view/gsam-iclr22/home. View details
    Contextualized Spatial-Temporal Contrastive Learning with Self-Supervision
    Liangzhe Yuan
    Rui Qian
    Yin Cui
    Boqing Gong
    Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2022), pp. 13977-13986
    Preview abstract Modern self-supervised learning algorithms typically enforce persistency of instance representations across views. While being very effective on learning holistic image and video representations, such an objective becomes sub-optimal for learning spatio-temporally fine-grained features in videos, where scenes and instances evolve through space and time. In this paper, we present Contextualized Spatio-Temporal Contrastive Learning (ConST-CL) to effectively learn spatio-temporally fine-grained video representations via self-supervision. We first design a region-based pretext task which requires the model to transform in-stance representations from one view to another, guided by context features. Further, we introduce a simple network design that successfully reconciles the simultaneous learning process of both holistic and local representations. We evaluate our learned representations on a variety of downstream tasks and show that ConST-CL achieves competitive results on 6 datasets, including Kinetics, UCF, HMDB, AVA-Kinetics, AVA and OTB. View details
    View-Invariant, Occlusion-Robust Probabilistic Embedding for Human Pose
    Jennifer Jianing Sun
    Jiaping Zhao
    Liangzhe Yuan
    Yuxiao Wang
    Liang-Chieh Chen
    International Journal of Computer Vision, 130 (2022), pp. 111-135
    Preview abstract Recognition of human poses and actions is crucial for autonomous systems to interact smoothly with people. However, cameras generally capture human poses in 2D as images and videos, which can have significant appearance variations across viewpoints that make the recognition tasks challenging. To address this, we explore recognizing similarity in 3D human body poses from 2D information, which has not been well-studied in existing works. Here, we propose an approach to learning a compact view-invariant embedding space from 2D body joint keypoints, without explicitly predicting 3D poses. Input ambiguities of 2D poses from projection and occlusion are difficult to represent through a deterministic mapping, and therefore we adopt a probabilistic formulation for our embedding space. Experimental results show that our embedding model achieves higher accuracy when retrieving similar poses across different camera views, in comparison with 3D pose estimation models. We also show that by training a simple temporal embedding model, we achieve superior performance on pose sequence retrieval and largely reduce the embedding dimension from stacking frame-based embeddings for efficient large-scale retrieval. Furthermore, in order to enable our embeddings to work with partially visible input, we further investigate different keypoint occlusion augmentation strategies during training. We demonstrate that these occlusion augmentations significantly improve retrieval performance on partial 2D input poses. Results on action recognition and video alignment demonstrate that using our embeddings without any additional training achieves competitive performance relative to other models specifically trained for each task. View details
    Learning View-Disentangled Human Pose Representation by Contrastive Cross-View Mutual Information Maximization
    Yuxiao Wang
    Jiaping Zhao
    Liangzhe Yuan
    Jennifer Jianing Sun
    Xi Peng
    Dimitris N. Metaxas
    Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021)
    Preview abstract We introduce a novel representation learning method to disentangle pose-dependent as well as view-dependent factors from 2D human poses. The method trains a network using cross-view mutual information maximization (CV-MIM) which maximizes mutual information of the same pose performed from different viewpoints in a contrastive learning manner. We further propose two regularization terms to ensure disentanglement and smoothness of the learned representations. The resulting pose representations can be used for cross-view action recognition. To evaluate the power of the learned representations, in addition to the conventional fully-supervised action recognition settings, we introduce a novel task called single-shot cross-view action recognition. This task trains models with actions from only one single viewpoint while models are evaluated on poses captured from all possible viewpoints. We evaluate the learned representations on standard benchmarks for action recognition, and show that (i) CV-MIM performs competitively compared with the state-of-the-art models in the fully-supervised scenarios;(ii) CV-MIM outperforms other competing methods by a large margin in the single-shot cross-view setting;(iii) and the learned representations can significantly boost the performance when reducing the amount of supervised training data. Our code is made publicly available at https://github. com/google-research/google-research/tree/master/poem. View details
    Preview abstract Videos can evoke a range of affective responses in viewers. The ability to predict evoked affect from a video, before viewers watch the video, can help in content creation and video recommendation. We introduce the Evoked Expressions from Videos (EEV) dataset, a large-scale dataset for studying viewer responses to videos. Each video is annotated at 6 Hz with 15 continuous evoked expression labels, corresponding to the facial expression of viewers who reacted to the video. We use an expression recognition model within our data collection framework to achieve scalability. In total, there are 36.7 million annotations of viewer facial reactions to 23,574 videos (1,700 hours). We use a publicly available video corpus to obtain a diverse set of video content. We establish baseline performance on the EEV dataset using an existing multimodal recurrent model. Transfer learning experiments show an improvement in performance on the LIRIS-ACCEDE video dataset when pre-trained on EEV. We hope that the size and diversity of the EEV dataset will encourage further explorations in video understanding and affective computing. A subset of EEV is released at https://github.com/google-research-datasets/eev. View details
    Preview abstract Understanding the degree to which human facial expressions co-vary with specific social contexts across cultures is central to the theory that emotions enable adaptive responses to important challenges and opportunities. Concrete evidence linking social context to specific facial expressions is sparse and is largely based on survey-based approaches, which are often constrained by language and small sample sizes. Here, by applying machine-learning methods to real-world, dynamic behaviour, we ascertain whether naturalistic social contexts (for example, weddings or sporting competitions) are associated with specific facial expressions across different cultures. In two experiments using deep neural networks, we examined the extent to which 16 types of facial expression occurred systematically in thousands of contexts in 6 million videos from 144 countries. We found that each kind of facial expression had distinct associations with a set of contexts that were 70% preserved across 12 world regions. Consistent with these associations, regions varied in how frequently different facial expressions were produced as a function of which contexts were most salient. Our results reveal fine-grained patterns in human facial expressions that are preserved across the modern world. View details
    Naive-Student: Leveraging semi-supervised learning in video sequences for urban scene segmentation
    Liang-Chieh Chen
    Rapha Gontijo Lopes
    Bowen Cheng
    Maxwell D. Collins
    Barret Richard Zoph
    Jon Shlens
    European Conference on Computer Vision (ECCV) (2020)
    Preview abstract Supervised learning in large discriminative models is a mainstay for modern computer vision. Such an approach necessitates investing in large-scale, human annotated datasets for achieving state-of-the-art results. In turn, the efficacy of supervised learning may be limited by the size of the human annotated dataset. This limitation is particularly notable for image segmentation tasks where the expense of human annotation may be especially large, yet large amounts of unlabeled data may exist. In this work, we ask if we may leverage unlabeled video sequences to improve the performance on urban scene segmentation using semi-supervised learning. The goal of this work is to avoid the construction of sophisticated, learned architectures specific to label propagation (e.g., patch matching and optical flow). Instead, we simply predict pseudo-labels for the unlabeled data and train subsequent models with a mix of human-annotated and pseudo-labeled data. The procedure is iterated for several times. As a result, our model, trained with such simple yet effective iterative semi-supervised learning, attains state-of-the-art results at all three Cityscapes benchmarks, reaching the performance of 67.6% PQ, 42.4% AP, and 85.1% mIOU on the test set. We view this work as a notable step for building a simple procedure to harness unlabeled video sequences to surpass state-of-the-art performance on core computer vision tasks. View details