Who am I Talking to? A Large-Scale Measurement of Surface Attribution Across Real-World Security and Privacy Interfaces

Jessica Johnson
Proceedings of ACM CHI 2026 (to appear)
Google Scholar

Abstract

Modern user interfaces are complex composites, with elements originating from various sources, such as the operating system, apps, a web browser, or websites. Many security and privacy models implicitly depend on users correctly identifying an element's source, a concept we term ''surface attribution.'' Through two large-scale vignette-based surveys (N=4,400 and N=3,057), we present the first empirical measurement of this ability.

We find that users struggle, correctly attributing UI source only 55% of the time on desktop and 53% on mobile. Familiarity and strong brand cues significantly improve accuracy, whereas UI positioning, a long-held security design concept especially for browsers, has minimal impact. Furthermore, simply adding a ''Security & Privacy'' brand cue to Android permission prompts failed to improve attribution. These findings demonstrate a fundamental gap in users' mental models, indicating that relying on them to distinguish trusted UI is a fragile security paradigm.
×