Towards a Personal Health Large Language Model

Anastasiya Belyaeva
Nick Furlotte
Zhun Yang
Chace Lee
Erik Schenck
Yojan Patel
Jian Cui
Logan Schneider
Robby Bryant
Ryan Gomes
Allen Jiang
Roy Lee
Javier Perez
Jamie Rogers
Cathy Speed
Shyam Tailor
Megan Walker
Jeffrey Yu
Tim Althoff
Conor Heneghan
Mark Malhotra
Shwetak Patel
Shravya Shetty
Jiening Zhan
Yeswanth Subramanian
Daniel McDuff
arXiv (2024)

Abstract

Large language models (LLMs) can retrieve, reason over, and make inferences about a wide range of information. In health, most LLM efforts to date have focused on clinical tasks. However, mobile and wearable devices, which are rarely integrated into clinical tasks, provide a rich, continuous, and longitudinal source of data relevant for personal health monitoring. Here we present a new model, Personal Health Large Language Model (PH-LLM), a version of Gemini fine-tuned for text understanding and reasoning over numerical time-series personal health data for applications in sleep and fitness. To systematically evaluate PH-LLM, we created and curated three novel benchmark datasets that test 1) production of personalized insights and recommendations from measured sleep patterns, physical activity, and physiological responses, 2) expert domain knowledge, and 3) prediction of self-reported sleep quality outcomes. For the insights and recommendations tasks we created 857 case studies in sleep and fitness. These case studies, designed in collaboration with domain experts, represent real-world scenarios and highlight the model’s capabilities in understanding and coaching. Through comprehensive human and automatic evaluation of domain-specific rubrics, we observed that both Gemini Ultra 1.0 and PH-LLM are not statistically different from expert performance in fitness and, while experts remain superior for sleep, fine-tuning PH-LLM provided significant improvements in using relevant domain knowledge and personalizing information for sleep insights. To further assess expert domain knowledge, we evaluated PH-LLM performance on multiple choice question examinations in sleep medicine and fitness. PH-LLM achieved 79% on sleep (N=629 questions) and 88% on fitness (N=99 questions), both of which exceed average scores from a sample of human experts as well as benchmarks for receiving continuing credit in those domains. To enable PH-LLM to predict self-reported assessments of sleep quality, we trained the model to predict self-reported sleep disruption and sleep impairment outcomes from textual and multimodal encoding representations of wearable sensor data. We demonstrate that multimodal encoding is both necessary and sufficient to match performance of a suite of discriminative models to predict these outcomes. Although further development and evaluation are necessary in the safety-critical personal health domain, these results demonstrate both the broad knowledge base and capabilities of Gemini models and the benefit of contextualizing physiological data for personal health applications as done with PH-LLM.