Toward Community- Led Evaluations of Text-to-Image AI Representations of Disability, Health, and Accessibility

Equity and Access in Algorithms, Mechanisms, and Optimization (EAAMO) (2025)

Abstract

Responsible AI advocates for user evaluations, particularly when concerning people with disabilities, health conditions, and accessibility needs ( DHA)–wide- ranging but umbrellaed sociodemograph- ics. However, community- centered text- to- image AI’s ( T2I) evaluations are often researcher- led, situating evaluators as consumers. We instead recruited 21 people with diverse DHA to evaluate T2I by writing and editing their own T2I prompts with their preferred language and topics, in a method mirroring everyday use. We contribute user- generated terminology categories which inform future research and data collections, necessary for developing authentic scaled evaluations. We additionally surface yet- discussed DHA AI harms intersecting race and class, and participants shared harm impacts they experienced as image- creator evaluators. To this end, we demonstrate that prompt engineering– proposed as a misrepresentation mitigation– was largely ineffective at improving DHA representations. We discuss the importance of evaluator agency to increase ecological validity in community- centered evaluations, and opportunities to research iterative prompting as an evaluation technique.