The Ontic-Epistemic Distinction: Implications for Robust Machine Intelligence

Shreya Ishita
Master's Thesis (2026) (to appear)
Google Scholar

Abstract

The current pursuit of robust Machine Intelligence is largely predicated on a substrate independent, functionalist view of cognition, where sufficiently large syntactic processing is expected to eventually yield semantic understanding. This paper explores the ontological distinctions between these computational frameworks and biological cognition, specifically regarding the emergence of robustness. By analyzing phenomena such as the "reversal curse" and performance on novel reasoning benchmarks (e.g., ARC-AGI), I examine whether current limitations are transient artifacts of scale or indicative of a distinct architectural category.

Synthesizing Stevan Harnad’s "Symbol Grounding Problem" with Evan Thompson’s framework of Intrinsic Normativity in autopoietic systems, I argue that true generality requires "Sense-Making", a process distinct from "Information Processing", whereby an agent’s internal states are causally coupled with its environment via survival or system wide stakes. Without this intrinsic normativity, machines may remain epistemic instruments rather than ontic agents. By defining this "Ontic Gap," this paper offers a theoretical lens for evaluating AI safety and governance, moving beyond behavioral simulation to address the structural conditions of understanding.
×