SYMBIOSIS: Systems Thinking and Machine Intelligence for Better Outcomes in Society
Abstract
This paper presents SYMBIOSIS, an AI-powered framework to make Systems Thinking accessible for addressing societal challenges and unlock paths for leveraging systems thinking framework to improve AI systems. The platform establishes a centralized, open-source repository of systems thinking/system dynamics models categorized by Sustainable Development Goals (SDGs) and societal topics using topic modeling and classification techniques. Systems Thinking resources, though critical for articulating causal theories in complex problem spaces, are often locked behind specialized tools and intricate notations, creating high barriers to entry. To address this, we developed a generative co-pilot that translates complex systems representations - such as causal loops and stock-flow diagrams - into natural language (and vice-versa), allowing users to explore and build models without extensive technical training.
Rooted in community-based system dynamics (CBSD) and informed by community-driven insights on societal context, we aim to bridge the problem understanding chasm. This gap, driven by epistemic uncertainty, often limits ML developers who lack the community-specific knowledge essential for problem understanding and formulation, often leading to misaligned causal theories and reduced intervention effectiveness. Recent research identifies causal and abductive reasoning as crucial frontiers for AI, and Systems Thinking provides a naturally compatible framework for both. By making Systems Thinking frameworks more accessible and user-friendly, we aim to serve as a foundational step to unlock future research into Responsible and society-centered AI that better integrates societal context leveraging systems thinking framework and models. Our work underscores the need for ongoing research into AI's capacity essential system dynamics such as feedback processes and time delays, paving the way for more socially attuned, effective AI systems.
Rooted in community-based system dynamics (CBSD) and informed by community-driven insights on societal context, we aim to bridge the problem understanding chasm. This gap, driven by epistemic uncertainty, often limits ML developers who lack the community-specific knowledge essential for problem understanding and formulation, often leading to misaligned causal theories and reduced intervention effectiveness. Recent research identifies causal and abductive reasoning as crucial frontiers for AI, and Systems Thinking provides a naturally compatible framework for both. By making Systems Thinking frameworks more accessible and user-friendly, we aim to serve as a foundational step to unlock future research into Responsible and society-centered AI that better integrates societal context leveraging systems thinking framework and models. Our work underscores the need for ongoing research into AI's capacity essential system dynamics such as feedback processes and time delays, paving the way for more socially attuned, effective AI systems.