Robust Wireless Resource Allocation Against Adversarial Jamming

Christos Tsoufis
Dionysia Triantafyllopoulou
Klaus Moessner
ICC (2026)
Google Scholar

Abstract

We study the problem of allocating access point bandwidth to users of a wireless network in the presence of adversarial jamming. Specifically, we consider a setting in which the network designer acts first and allocates access point bandwidth to the users of the network, before an adversary applies a jamming strategy to reduce the bandwidth of a subset (or all) of the access points. We consider a strong adversary who has complete information and can optimize the jamming strategy, subject to power budget constraints. In turn, the network designer must allocate the resources in anticipation of the adversary's actions.

We explain that our model gives rise to a special network interdiction model, which differs from the standard setting in two ways: The first is that the interdictor is given the benefit of responding, rather than leading the game. The second is that the interdiction is fractional and performed at the node level of the network. The interdiction then propagates to all edges incident to the access point.

In terms of technical results, we provide an allocation algorithm that is based on linear programming duality and show that the algorithm can solve the problem optimally, assuming knowledge of the adversary's budget constraints. We conduct experiments on synthetic data to show the extent to which the algorithm improves the total utilized bandwidth over the algorithm that optimizes bandwidth allocation while being oblivious to the adversary's existence.
×