Readout of a quantum processor with high dynamic range Josephson parametric amplifiers

Andrew Dunsworth
Markus Rudolf Hoffmann
Alexis Morvan
Josh Godfrey Cogan
Ben Curtin
Bob Benjamin Buckley
Trevor Johnathan Mccourt
John Mark Kreikebaum
Rajeev Acharya
Ningfeng Zhu
Shirin Montazeri
Jamie Yao
Rebecca Potter
Sean Harrington
Jeremy Patterson Hilton
Alex Crook
Fedor Kostritsa
Trent Huang
Aaron Shorter
Vladimir Shvarts
Alfredo Torres
Anthony Megrant
Charles Neill
Michael C. Hamilton
Lily MeeKit Laws
Nicholas Bushnell
Mike Shearn
Xiao Mi
Brooks Riley Foxen
Frank Carlton Arute
Alejandro Grajales Dau
Alexander Lill
JiunHow Ng
Justin Thomas Iveland
Marco Szalay
Juhwan Yoo
William Giang
Alex Opremcak
Wayne Liu
Pavel Laptev
Benjamin Chiaro
Grayson Robert Young
Tim Burger
Jimmy Chen
Marika Kieferova
Markus Ansmann
Murray Nguyen
Roberto Collins
Yu Chen
Reza Fatemi
Leon Brill
Ashley Anne Huff
Ebrahim Forati
Dave Landhuis
Kenny Lee
Ping Yeh
Kunal Arya
Alexander Korotkov
Ani Nersisyan
Christopher Schuster
Alexandre Bourassa
Kannan Aryaperumal Sankaragomathi
Applied Physics Letters, 122 (2023), pp. 014001
Google Scholar

Abstract

We demonstrate a high dynamic range Josephson parametric amplifier (JPA) in which the active nonlinear element is implemented using an array of rf-SQUIDs. The device is matched to the 50 $\Omega$ environment with a Klopfenstein-taper impedance transformer and achieves a bandwidth of 250-300 MHz, with input saturation powers up to $-95$~dBm at 20 dB gain. A 54-qubit Sycamore processor was used to benchmark these devices, providing a calibration for readout power, an estimate of amplifier added noise, and a platform for comparison against standard impedance matched parametric amplifiers with a single dc-SQUID. We find that the high power rf-SQUID array design has no adverse effect on system noise, readout fidelity, and qubit dephasing, and we estimate an upper bound on amplifier added noise at 1.6 times the quantum limit. Lastly, amplifiers with this design show no degradation in readout fidelity due to gain compression, which can occur in multi-tone multiplexed readout with traditional JPAs.

Research Areas