Google Research

On Label Granularity and Object Localization

  • Elijah Henry John Cole
  • Kimberly Wilber
  • Grant Van Horn
  • Xuan Yang
  • Marco Fornoni
  • Pietro Perona
  • Serge Belongie
  • Andrew Howard
  • Mac Aodha, Oisin
European Conference on Computer Vision, Springer (2022), pp. 604-620

Abstract

Weakly supervised object localization (WSOL) aims to learn representations that encode object location using only image-level category labels. However, many objects can be labeled at different levels of granularity. Is it an animal, a bird, or a great horned owl? Which image-level labels should we use? In this paper we study the role of label granularity in WSOL. To facilitate this investigation we introduce iNatLoc500, a new large-scale fine-grained benchmark dataset for WSOL. Surprisingly, we find that choosing the right training label granularity provides a much larger performance boost than choosing the best WSOL algorithm. We also show that changing the label granularity can significantly improve data efficiency.

Research Areas

Learn more about how we do research

We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work