- Aaron Shorter
- Aditya Locharla
- Alejandro Grajales Dau
- Alex Crook
- Alex Opremcak
- Alexander Korotkov
- Alexander Lill
- Alexandre Bourassa
- Alexis Morvan
- Alfredo Torres
- Andreas Bengtsson
- Andrew Dunsworth
- Ani Nersisyan
- Anthony Megrant
- Anthony Nguyen
- Ashley Anne Huff
- Ben Curtin
- Benjamin Chiaro
- Bob Benjamin Buckley
- Brian Burkett
- Brian Lester
- Brooks Riley Foxen
- Bryan W. K. Woo
- Catherine Erickson
- Charles Neill
- Chris Quintana
- Christopher Schuster
- Daniel Sank
- Dave Landhuis
- David A Buell
- Ebrahim Forati
- Erik Lucero
- Evan Jeffrey
- Fedor Kostritsa
- Frank Carlton Arute
- Grayson Robert Young
- Jamie Yao
- Jenna Nicole Bovaird
- Jeremy Patterson Hilton
- Jimmy Chen
- JiunHow Ng
- Joe Bardin
- John Mark Kreikebaum
- Josh Godfrey Cogan
- Juhwan Yoo
- Julian Kelly
- Justin Thomas Iveland
- Kannan Aryaperumal Sankaragomathi
- Kenny Lee
- Kevin Satzinger
- Kunal Arya
- Leon Brill
- Leslie Flores
- Lily MeeKit Laws
- Marco Szalay
- Marika Kieferova
- Marissa Giustina
- Markus Ansmann
- Markus Rudolf Hoffmann
- Matt McEwen
- Matthew Neeley
- Michael C. Hamilton
- Mike Shearn
- Murray Nguyen
- Nicholas Bushnell
- Nicholas Zobrist
- Ningfeng Zhu
- Ofer Naaman
- Paul Victor Klimov
- Pavel Laptev
- Pedram Roushan
- Ping Yeh
- Rajeev Acharya
- Rebecca Potter
- Reza Fatemi
- Roberto Collins
- Sabrina Hong
- Sean Demura
- Sean Harrington
- Seon Kim
- Shirin Montazeri
- Ted White
- Tim Burger
- Trent Huang
- Trevor Johnathan Mccourt
- Vladimir Shvarts
- Wayne Liu
- William Giang
- Xiao Mi
- Yu Chen
Abstract
We demonstrate a high dynamic range Josephson parametric amplifier (JPA) in which the active nonlinear element is implemented using an array of rf-SQUIDs. The device is matched to the 50 $\Omega$ environment with a Klopfenstein-taper impedance transformer and achieves a bandwidth of 250-300 MHz, with input saturation powers up to $-95$~dBm at 20 dB gain. A 54-qubit Sycamore processor was used to benchmark these devices, providing a calibration for readout power, an estimate of amplifier added noise, and a platform for comparison against standard impedance matched parametric amplifiers with a single dc-SQUID. We find that the high power rf-SQUID array design has no adverse effect on system noise, readout fidelity, and qubit dephasing, and we estimate an upper bound on amplifier added noise at 1.6 times the quantum limit. Lastly, amplifiers with this design show no degradation in readout fidelity due to gain compression, which can occur in multi-tone multiplexed readout with traditional JPAs.
Research Areas
Learn more about how we do research
We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work