Google Research

Kubric: A scalable dataset generator

(2022)

Abstract

Data is the driving force of machine learning. The amount and quality of training data is often more important for the performance of a system than the details of its architecture. Data is also an important tool for testing specific hypothesis, and for empirically evaluating the behaviour of complex systems. Synthetic data generation represents a powerful tool that can address all these shortcomings: 1) it is cheap 2) supports rich ground-truth annotations 3) offers full control over data and 4) can circumvent privacy and legal concerns. Unfortunately the toolchain for generating data is less well developed than that for building models. We aim to improve this situation by introducing Kubric: a scalable open-source pipeline for generating realistic image and video data with rich ground truth annotations. We also publish a collection of generated datasets and baseline results on several vision tasks.

Research Areas

Learn more about how we do research

We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work