Google Research

A Context Integrated Transformer-based Neural Network for Auction Design

The Thirty-ninth International Conference on Machine Learning (ICML'22) (2022)


One of the central problems in auction design is to develop an incentive compatible mechanism that maximizes the expected revenue. While theoretical approaches have encountered bottlenecks for multi-item auctions, recently there are many progresses of finding optimal auction through deep learning. However, such works either focus on a fixed set of bidders and items, or restrict the auction to be symmetric. In this work, we overcome this limitation by factoring \emph{public} contextual information of bidders and items into deep learning framework. We propose $\mathtt{CITransNet}$, a context integrated transformer-based neural network for contextual auction design, which maintains permutation-equivariance over bids while being able to handle asymmetric contextual information in auctions. We show by extensive experiments that $\mathtt{CITransNet}$ can recover the known optimal analytical solutions, obtain novel mechanisms for complex multi-item auctions, and generalize to settings different from training set.

Learn more about how we do research

We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work