- Ashkan Norouzi Fard
- Federico Fusco
- Morteza Zadimoghaddam
- Paul Duetting
- Silvio Lattanzi

## Abstract

Maximizing a monotone submodular function is a fundamental task in machine learning. In this paper we study the deletion robust version of the problem under the classic matroids constraint. Here the goal is to extract a small size summary of the dataset that contains a high value independent set even after an adversary deleted some elements. We present constant-factor approximation algorithms, whose space complexity depends on the rank $k$ of the matroid and the number $d$ of deleted elements. In the centralized setting we present a $(3.582+O(\eps))$-approximation algorithm with summary size $O(k + \frac{d \log k}{\eps^2})$. In the streaming setting we provide a $(5.582+O(\eps))$-approximation algorithm with summary size and memory $O(k + \frac{d \log k}{\eps^2})$. We complement our theoretical results with an in-depth experimental analysis showing the effectiveness of our algorithms on real-world datasets.

## Research Areas

### Learn more about how we do research

We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work